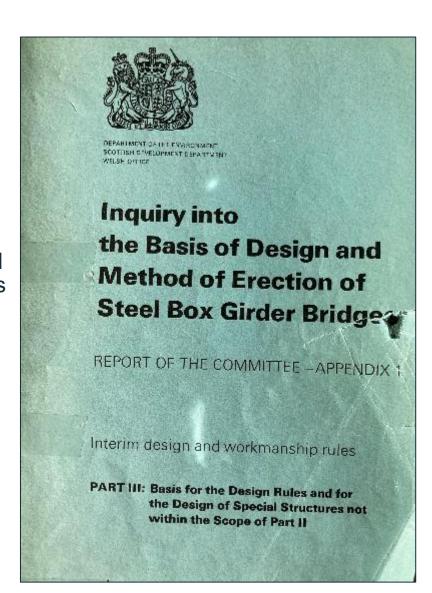
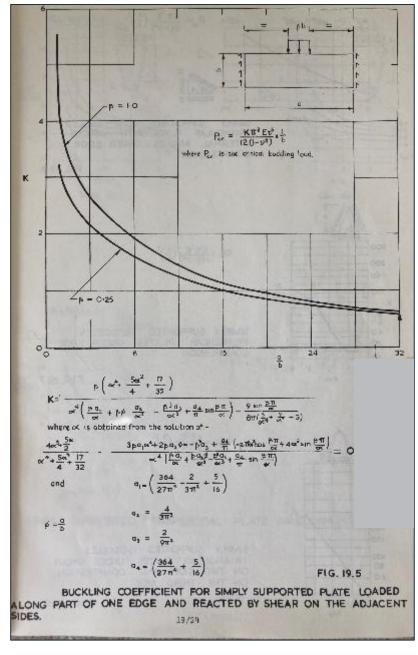
STEEL CONSTRUCTION

Technical improvements for steel bridge design in the second generation EurocodeS

Chris Hendy

AtkinsRéalis


STEEL CONSTRUCTION


- Second generation Eurocodes and timescales
- Main technical changes in EN 1993-1-5 and EN 1993-2 for steel bridge design
- Other changes in EN 1993-1-1, EN 1993-1-9, EN 1993-1-10 and EN 1993-1-11 relating to bridges

Introduction - Role of Codes of Practice

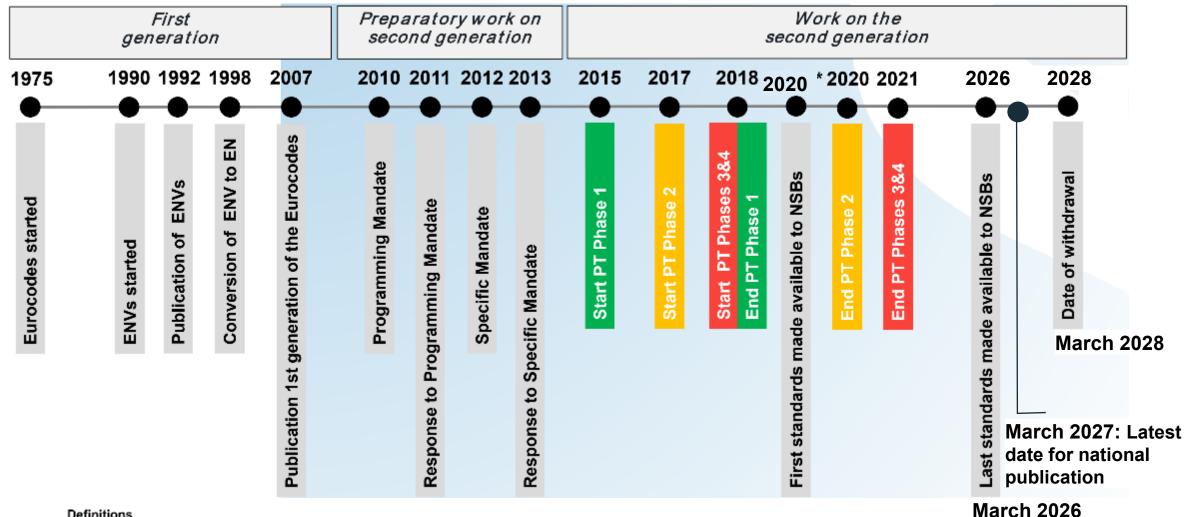
Most Codes of Practice have got longer over time, but not more complicated in all cases

- IDWR was produced following the collapse of West Gate and Cleddau bridges to deal with complex buckling issues
- Critical stresses were introduced as basis for buckling calculations
- Rules simplified in BS 5400:Part
 3 as designers struggled with
 IDWR
- Eurocodes returned to critical stresses but with simpler formulae or use of FE
- Second Generation Eurocodes have provided more material to cover more topics

Evolved Eurocodes

EN 1990	Eurocode 0	Basis of structural and geotechnical design
EN 1991	Eurocode 1	Actions on structures
EN 1992	Eurocode 2	Design of concrete structures
EN 1993	Eurocode 3	Design of steel structures
EN 1994	Eurocode 4	Design of composite steel and concrete structures
EN 1995	Eurocode 5	Design of timber structures
EN 1996	Eurocode 6	Design of masonry structures
EN 1997	Eurocode 7	Geotechnical design
EN 1998	Eurocode 8	Design of structures for earthquake resistance
EN 1999	Eurocode 9	Design of aluminium alloy structures
EN 19100	Eurocode 10	Design of Glass Structures

New Eurocodes


 EN 19100 Design of glass structures – Furocode 10

New CEN Technical Specifications to become Eurocodes

- CEN/TS 19101 Design of fibrepolymer composite structures – Eurocode 11
- CEN/TS 19102 Design of membrane structures – Eurocode 12
- CEN/TS 17440:2020 Assessment of existing structures (currently prEN 1990-2 with prEN 1990-1 New structures)

Plus other new CEN Technical Specifications

Second generation of the Eurocodes: what is new? | Eurocodes: Building the future (europa.eu) https://eurocodes.jrc.ec.europa.eu/2nd-generation/eurocodes-evolution-explained-video-series

Definitions

'Date of availability (DAV): Date when the definitive text in the official language versions of an approved CEN/CENELEC publication is distributed by the Central Secretariat .

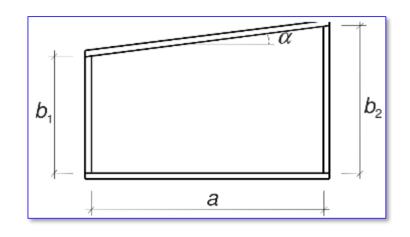
Date of publication (DoP): Latest date by which an EN has to be implemented at national level by publication of an identical national standard or by endorsement •

Date of withdrawal (DoW): Latest date by which national standards conflicting with an EN have to withdraw.'

- New Eurocodes will aim to improve ease of use, including:
 - Address specific needs of diverse users
 - Improve clarity and provide missing material
 - Reduce inconsistencies and mistakes
 - Reduce length
 - Reduce NDPs
 - Update rules where more reliable material exists
 - Encourage innovation
 - Adopt ISO standards where possible
 - Consider climate change and robustness
- Systematic review comments and queued amendments addressed
- This has led to a moderate amount of amended and new material in EN 1993 and a lot of change in EN 1992
- Existing clause numbers will be incremented by two e.g. current Section 3 Materials, will be Section 5 Materials

Examples from EN 1993-1-5

Moderate change


Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements

Einführendes Element — Haupt-Element — Ergänzendes Element

Élément introductif — Élément central — Élément complémentaire

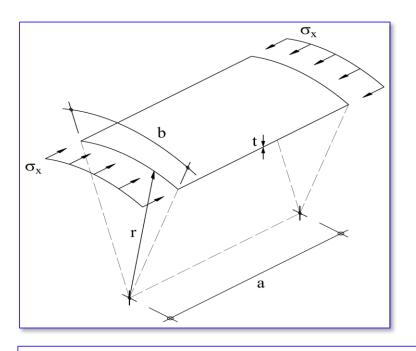
Eurocode is now published by BSI

Examples from EN 1993-1-5 Improved clarity on coverage of curved panels

- Clause is currently ambiguous about direction of application of curvature; "a" is usually "panel length"
- Caused arguments on design of at least one arch project

NOTE 4: Single plate elements may be considered as flat where the curvature radius r satisfies:

$$r \ge \frac{a^2}{t}$$


(1.1)

Current rule

where a is the panel width

t is the plate thickness

Examples from EN 1993-1-5 Improved clarity on coverage of curved panels

- Now resolved and aligned with new rules for curved panels in EN 1993-2 i.e. a plate is "flat" if curvature Z = b²/rt ≤ 1.0
- Curvature in the "a" direction not addressed

(3) Single plate elements may be considered as flat where the curvature radius r in the direction perpendicular to the compression satisfies:

$$r \ge \frac{b^2}{t}$$
 (1.1) New rule

where b

is the panel width

t

is the plate thickness

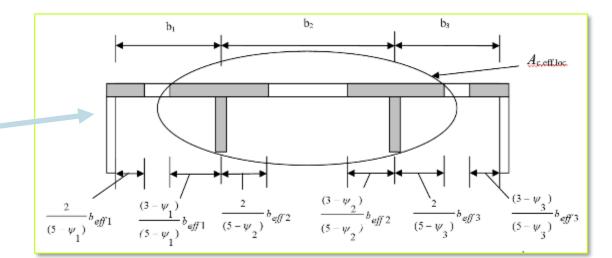
• For guidance on arches, see PD 6695-2 and Walton Bridge – a new arch bridge over the River Thames, UK, ICE Bridge Engineering

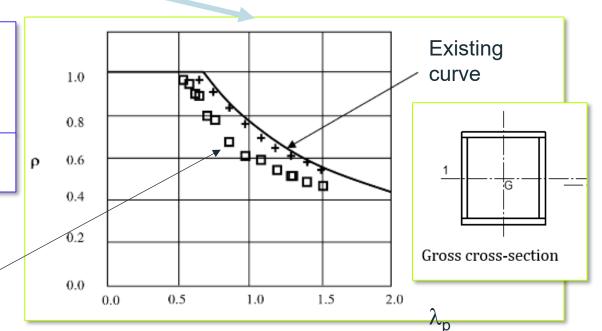
Example changes in EN 1993-1-5 Class 4 Sections

- (2) The reduction factor ρ may be taken as
 - For internal compression elements:

$$\rho = 1.0 \qquad \text{for } \bar{\lambda}_{p} \le 0.5 + \sqrt{0.085 - 0.055 \, \psi}$$

$$\rho = \frac{\bar{\lambda}_{p} - 0.055 \, (3 + \psi)}{\left(\bar{\lambda}_{p}\right)^{2}} \qquad \text{for } \bar{\lambda}_{p} > 0.5 + \sqrt{0.085 - 0.055 \, \psi}$$


$$(6.2)$$


- Parametric study on stub box columns identified that current reduction factors for single plates or plates with no membrane restraint are not safesided so addition proposed to cover these cases:
 - (10) For unstiffened internal compression elements where no membrane or clamping restraint can develop, Formula (6.2) should be substituted by Formula (12.6) with α_p = 0,34 and $\bar{\lambda}_{p0}$ = 0,70.

NOTE: This is typically the case of unstiffened square hollow sections under pure compression or situations where the plate into consideration is not connected to adjacent plates with a full penetration weld or with two-sided fillet welds. The National Annex can specify additional situations identified as non-restrained.

$$\rho = \frac{1}{\varphi_{p} + \sqrt{\varphi_{p}^{2} - \bar{\lambda}_{p}}} \qquad \text{for } \bar{\lambda}_{p} > \bar{\lambda}_{p0} \quad \text{with} \qquad \varphi_{p} = \frac{1}{2} \left(1 + \alpha_{p} \left(\bar{\lambda}_{p} - \bar{\lambda}_{p0} \right) + \bar{\lambda}_{p} \right) \quad (12.6)$$

Tests

Examples from EN 1993-1-5 Non-rectangular panels

If Φ does not exceed 10°, the panel may be assessed assuming it to be rectangular based on larger b_1 and b_2 of the panel, whereby the b_1 smaller and b_2 larger width of panel indicated. If Φ is higher than 10° and less than 17,5°, the corresponding rules for non-rectangular panel should be applied.

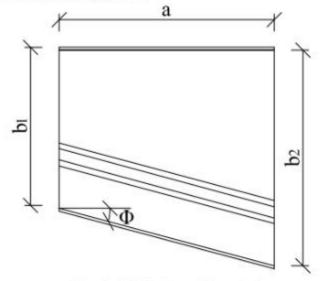
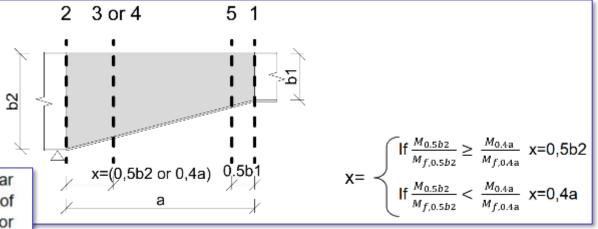
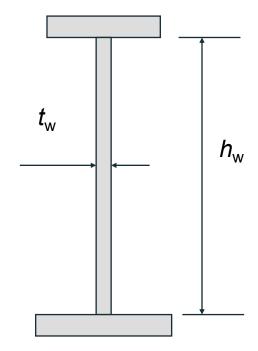
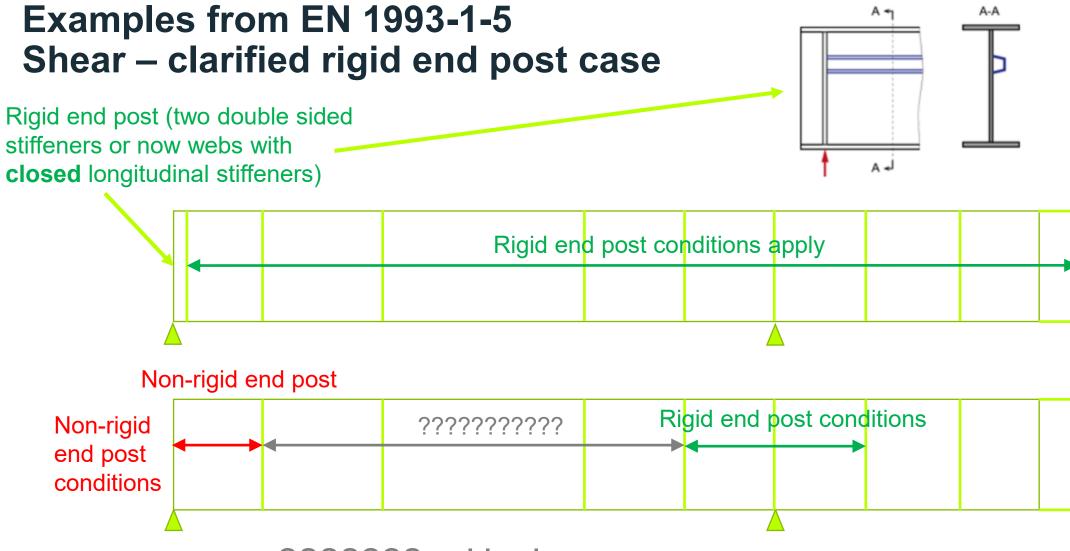



Fig. 3.1:Definition of angle Φ




- Rules for non-rectangular panels clarified and extended from current limit of Φ < 10° to Φ < 17.5°
- Requires checks to be done using the stresses and resistances at a number of discrete cross-sections
- A unique slenderness is calculated at each cross section 3,4 and 5 (because $\sigma_{\text{crit},p}$ changes at each location)

Examples from EN 1993-1-5 Shear – clarified rigid end post case

$$V_{bw,Rd} = \frac{\chi_w f_{yw} h_w t}{\sqrt{3} \gamma_{M1}}$$

?????? = Unclear zone

Examples from EN 1993-1-5 Shear – clarified rigid end post case

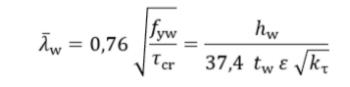


Table 7.1: Contribution from the web χ_w to shear buckling resistance

	End panels with non-rigid end post	All the other cases (intermediate panels and end panels with rigid end post)
$\overline{\lambda}_w < 0.83 / \eta$	η	η
$0.83 / \eta \le \overline{\lambda}_w < 1.08$	0,83 / $\overline{\lambda}_{w}$	$0.83 / \overline{\lambda}_w$
$\overline{\lambda}_w \ge 1,08$	0,83 / $\overline{\lambda}_{w}$	$1,37/(0,7+\overline{\lambda}_w)$

Examples from EN 1993-1-5 Shear – improved resistance with closed longitudinal stiffeners

- The second moment of area of a longitudinal stiffener currently needs to be reduced to 1/3 of its actual value when calculating the shear slenderness
- This reduction is now only required for open section longitudinal stiffeners as tests show closed stiffeners increase the shear strength compared to an equivalent open section
- $\tau_{\rm cr}$ is now clarified to be determined with hinged boundary conditions for the web if got from FEM

Where $\tau_{cn} = k_{\tau} \sigma_{E}$

(1) For plates with rigid transverse stiffeners and without longitudinal stiffeners or with more than two longitudinal stiffeners, the shear buckling coefficient k_{τ} should be obtained as follows:

$$k_{\tau} = 5,34 + 4,00 \left(h_{w} / a \right)^{2} + k_{ss\ell} \quad when \ a / h_{w} \ge 1$$

$$k_{\tau} = 4,00 + 5,34 \left(h_{w} / a \right)^{2} + k_{ss\ell} \quad when \ a / h_{w} < 1$$
Where

$$k_{\text{rs}\ell} = 9 \left(\frac{h_{\text{w}}}{a}\right)^2 \sqrt[4]{\left(\frac{\beta_{\text{sl}} \cdot I_{\text{sl}}}{t^3 h_{\text{w}}}\right)^3} \text{ but not less than } \frac{2,1}{t} \sqrt[3]{\frac{\beta_{\text{sl}} \cdot I_{\text{sl}}}{h_{\text{w}}}}$$

a is the distance between transverse stiffeners;

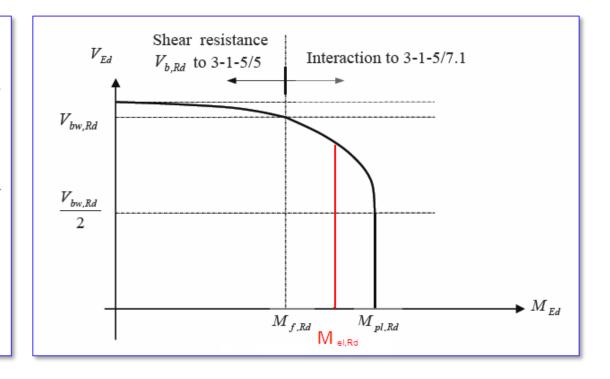
is the second moment of area of the longitudinal stiffener about the z-z axis, (b). For webs with longitudinal stiffeners, not necessarily equally spaced, $I_{\star \ell}$ is the sum of the moment of inertia of the individual stiffeners;

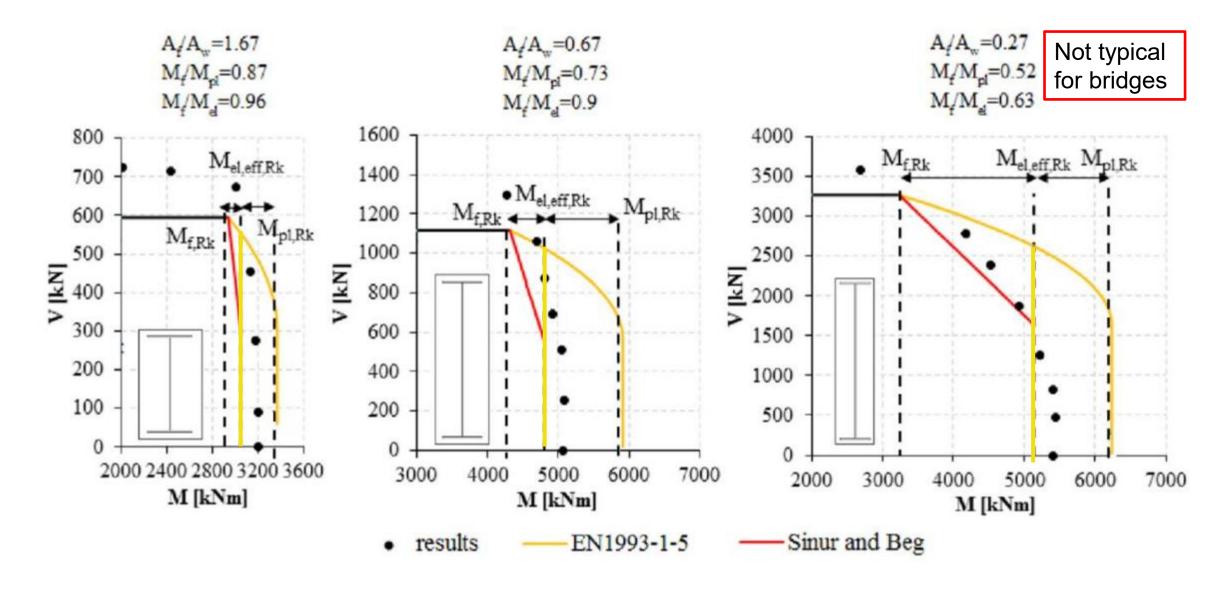
 β_s is equal to 1,0 for open-section longitudinal stiffeners and is equal to 3,0 for closed-section longitudinal stiffeners.

 Extended numerical study was performed on the design of longitudinally stiffened and unstiffened plate girders subjected to M-V interaction. The results showed that the current M-V interaction is not always safe-sided but this is the case only for certain geometries with small flanges and large webs

7.1 Interaction between shear force, bending moment and axial force

(1) Provided that η_3 (see below) does not exceed 0,5, the design resistance to bending moment and axial force need not be reduced to allow for the shear force. If η_3 is more than 0,5 the combined effects of bending and shear in the web of an I or box girder should satisfy:


$$\frac{1}{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) \left(2\eta_2 - 1\right)^2 \le 1,0 \quad \text{for } \eta_1 \ge \frac{M_{f,Rd}}{M_{pl,Rd}}$$
(7.1)


where $M_{f,Rd}$ is the design plastic moment of resistance of the section consisting of the effective area of the flanges;

 $M_{\rm pl,Rd}$ is the design plastic resistance of the cross section consisting of the effective area of the flanges and the fully effective web irrespective of its section class.

$$\frac{1}{\eta_1} = \frac{M_{Ed}}{M_{pl,Rd}}$$

$$\frac{1}{\eta_3} = \frac{V_{Ed}}{V_{cont}}$$
For $V_{bw,Rd}$ see expression (5.2). (5.2)

9.1 Interaction between shear force, bending moment and axial force

(1) Provided that $\overline{\eta}_3$ (see below) does not exceed 0,5, the design resistance to bending moment and axial force need not be reduced to allow for the shear force. If $\overline{\eta}_3$ is more than 0,5 the combined effects of bending and shear in the web of an I or box girder should satisfy:

$$\eta_1 + \left(1 - \frac{M_{f,Rd}}{M_{eff,Rd}}\right) \left(2\bar{\eta}_3 - 1\right)^{\mu} \le 1, 0 \quad \text{for } \eta_1 \ge \frac{M_{f,Rd}}{M_{eff,Rd}}$$
(9.1)

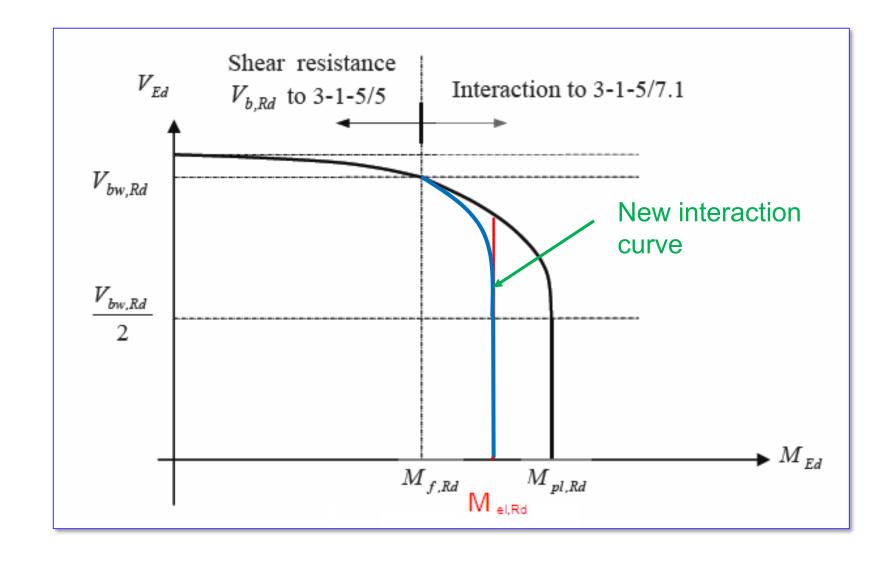
where

 $M_{\rm f,Rd}$ is the characteristic plastic moment of resistance of the cross-section consisting of the effective area of the flanges only;

$$M_{\rm eff,Rd} = W_{\rm eff} f_{\rm v} / \gamma_{\rm M0} \tag{9.2}$$

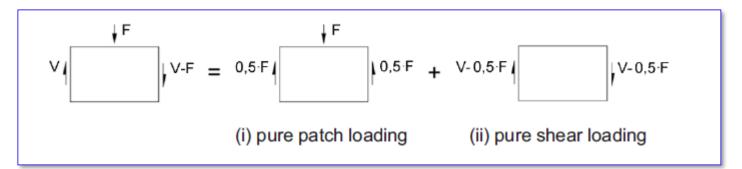
 η_1 see 6.7(1)

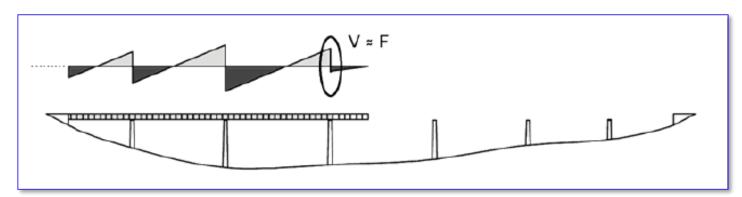
New rule


$$\overline{\eta}_3 = \frac{V_{\text{Ed}}}{V_{\text{bw Rd}}} \tag{9.3}$$

For $V_{\text{bw,Rd}}$, see Formula (7.2)

$$\mu = \left(\frac{M_{\text{f,Rd}}}{M_{\text{eff,Rd}}} + 0.2\right)^{15} + 1$$
 μ varies between 1.0 and 16 (9.4)





Examples from EN 1993-1-5 Patch loading – addressing an omission

STEEL CONSTRUCTION

- F-M-V interaction is not covered in first generation EN 1993-1-5 (only F-M)
- Important for bridge launches for example
- Needs addition for safety

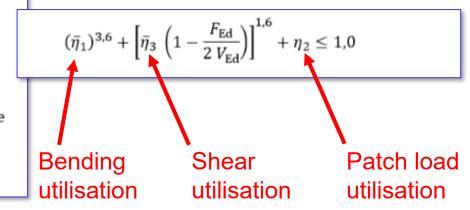
Examples from EN 1993-1-5 Patch loading – addressing an omission

- F-M-V interaction is not covered in first generation EN 1993-1-5 (only F-M)
- Important for bridge launches for example
- Needs addition for safety

9.3 Interaction between transverse force, bending moment and shear force

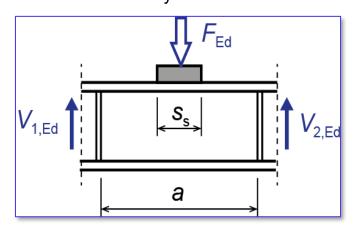
- (1) This interaction should be verified if $\eta_2 > 0.1$ with η_2 defined in 8.6(1). If $\eta_2 \le 0.1$, the verification is limited to a bending moment and shear force interaction according to 9.1.
- (2) If the girder is subjected to a concentrated transverse force acting on the compression flange in conjunction with bending moment and shear force, the resistance should be verified using 6.7, 7.5, 8.6 and the following interaction formula:

$$(\bar{\eta}_1)^{3,6} + \left[\bar{\eta}_3 \left(1 - \frac{F_{\rm Ed}}{2V_{\rm Ed}}\right)\right]^{1,6} + \eta_2 \le 1,0$$
 (9.6)


Where

$$\bar{\gamma}_1 = \frac{M_{\mathrm{Ed}}}{M_{\mathrm{f.eff.Rd}}}$$

MteffRd is the design plastic moment of resistance of the cross section consisting of the effective area of the flanges and the fully effective web irrespective of its section class.


$$\bar{\eta}_3$$
 see 9.1(1)

Important because otherwise this is more conservative than M-V interaction at zero patch load

Examples from EN 1993-1-5 Patch loading – improving the accuracy

Current resistance overestimates patch loading resistance with hybrid girders (flanges with greater f_{v}) and underestimated for other girders

Reduction factor χ_F for effective length for resistance

The reduction factor $\chi_{\rm F}$ should be obtained from:

$$\chi_F = \frac{0.5}{\overline{\lambda}_F} \le 1.0$$

where
$$\overline{\lambda}_F = \sqrt{\frac{\ell_y t_w f_{yw}}{F_{cr}}}$$

$$F_{cr} = 0.9 k_F E \frac{t_w^3}{h}$$
 k_F from formula only

Current rule

8.4 Reduction factor 2F

(1)The reduction factor χ_F should be obtained from:

$$\chi_{\rm F} = \frac{1.0}{\varphi_{\rm F} + \sqrt{\varphi_{\rm F}^2 - \bar{\lambda}_{\rm F}}} \le 1.0$$

New rule

where:

$$\varphi_{\mathrm{F}} = \frac{1}{2} \left(1 + \alpha_{\mathrm{F0}} \left(\bar{\lambda}_{\mathrm{F}} - \bar{\lambda}_{\mathrm{F0}} \right) + \bar{\lambda}_{\mathrm{F}} \right)$$

$$ar{\lambda}_{ ext{F}} = \sqrt{rac{\ell_{ ext{y}} \, t_{ ext{w}} \, f_{ ext{yw}}}{F_{ ext{cr}}}}$$

$$\alpha_{\rm F0} = 0.75$$

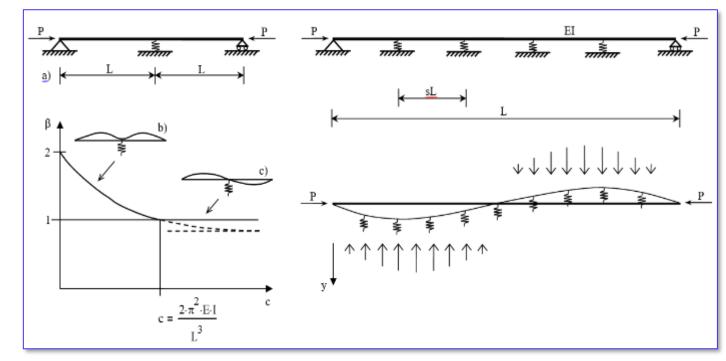
$$\bar{\lambda}_{\mathrm{FO}} = 0.50$$

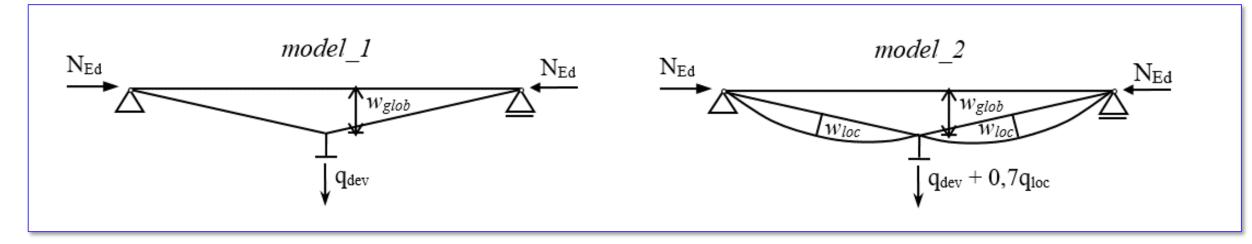
$$F_{
m cr}=$$
 0,9 $k_{
m F}$ E $rac{t_{
m w}^3}{h_{
m w}}$

 $k_{\rm F}$ from formula or FEM (allows for beneficial $F_{\rm cr} = 0.9 \, k_{\rm F} \, E \, rac{t_{
m w}^3}{L}$ (allows for beneficial torsional stiffness of closed stiffeners)

Existing rules:

- Current rule used simple mechanical model
- Transverse stiffener under consideration has initial bow
- Creates a kink in the web which pushes the stiffener out of plane
- Second order problem
- Critical forces for web panel based on shortest panel length, even though mode of buckling being prevented involves a₁ + a₂

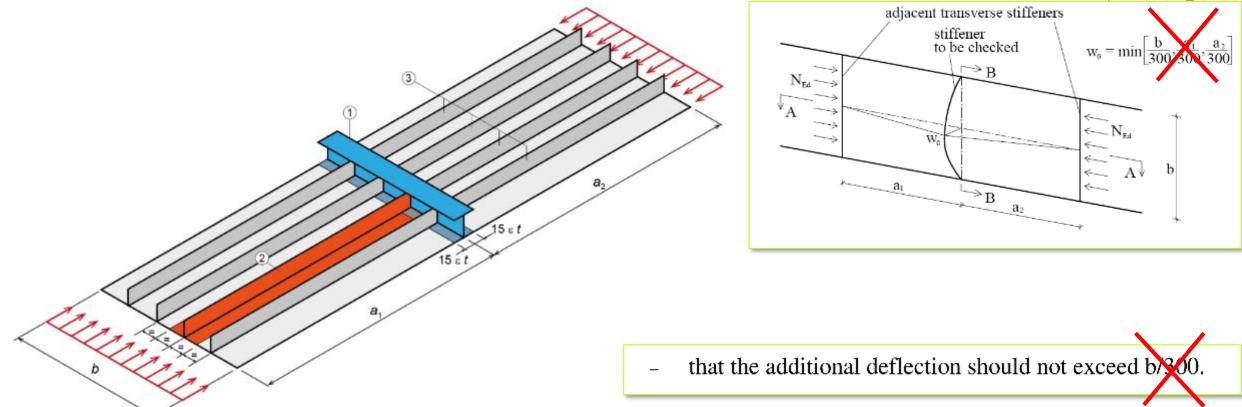



Existing rules:

Two problems identified:

(i) Stiffness of transverse stiffener is important or other modes may occur

(ii) Local imperfection is important



New rules – maintains same mechanical model with different limits

b/200, $a_1/200$, $a_2/200$

b /500

1 – Transverse stiffener: minimum second moment of area = I_{st} 2 – Longitudinal stiffener: Out-of-plane inertia I_b for the cross-section 3 – n number of the longitudinal stiffeners

Figure 11.3: Example of a box girder flange under pure compression

New rules – maintains same mechanical model with different limits

- (2) The transverse stiffener should be treated as a simply supported member subject to lateral loading with an initial sinusoidal imperfection w_0 equal to s/200, where s is the smallest of a_1 , a_2 or b, see Figure 11.2, where a_1 and a_2 are the lengths of the panels adjacent to the transverse stiffener under consideration and b is the height between the centroids of the flanges or span of the transverse stiffener. Eccentricities should be accounted for.
- (4) It should be verified that using a second order elastic method analysis all the following criteria are satisfied at the ultimate limit state:
- that the maximum stress in the stiffener should not exceed f_y/γ_{M1} ;
- that the additional deflection should not exceed b/500;
- that the second moment of area I_{st} of the transverse stiffener is not less than:

$$I_{st} = \frac{3.92 \cdot n \cdot I_b \cdot b^3}{\pi^2 \cdot a^3}$$

(11.1)

where: I_b out-of-plane inertia of the longitudinal stiffener with adjacent plate part,

n number of longitudinal stiffeners within the plate,

 $a=min(a_1,a_2)$ minimum length of the investigated panels.

Examples from EN 1993-2

Moderate change

Eurocode 3 — Design of steel structures — Part 2: Steel Bridges

Eurocode 3 — Bemessung und konstruktion von Stahlbauten — Teil 2: Stahlbrücken

Eurocode 3 — Calcul des structures en acier — Partie 2 : Ponts métalliques

Eurocode is not yet published by BSI

Examples from EN 1993-2 Bracing design

- Current EN 1993-2 force –
 for bracings is too large uses imperfection of
 approximately L_e/200 for
 buckling of strut itself
- Revised version uses
 L_w/500 based on the
 actual geometrical bow
 (compatible with bow in
 EN 1993-1-1-), but also
 over half-wavelength not
 effective length
- BS5400 used L_w / 667

$$F_{\rm Ed} = \frac{N_{\rm Ed}}{100} \text{ if } l_{\rm k} \le 1,2l$$

$$l N_{\rm Ed} = 1$$

$$F_{\rm Ed} = \frac{l}{l_{\rm k}} \frac{N_{\rm Ed}}{80} \frac{1}{1 - \frac{N_{\rm Ed}}{N_{\rm crit}}} \text{ if } l_{\rm k} > 1,2l$$

where

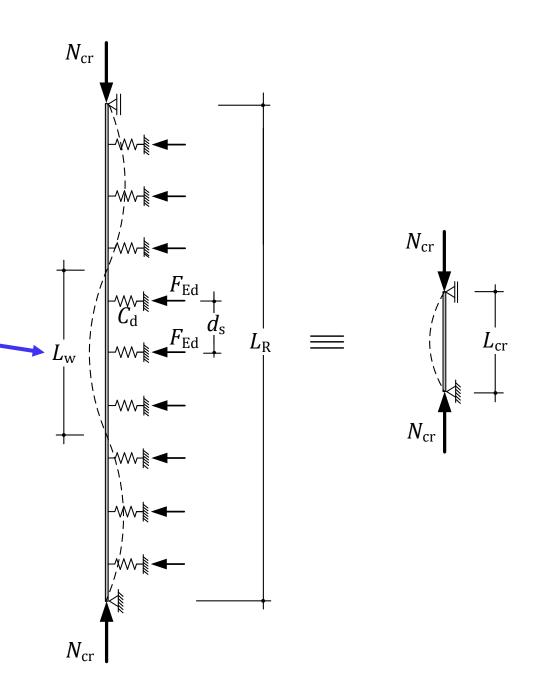
$$l_{\rm k} = \pi \sqrt{\frac{EI}{N_{\rm crit}}}$$

is the distance between the springs.

(4) For chords in compression or the bottom flanges of continuous girders between rigid supports, the effect of initial imperfections and second order effects on a supporting spring may be taken into account by a first order calculation, by applying an additional lateral force $F_{\rm Ed}$ at the connection of the chord to the spring according to the Formulae (8.5):

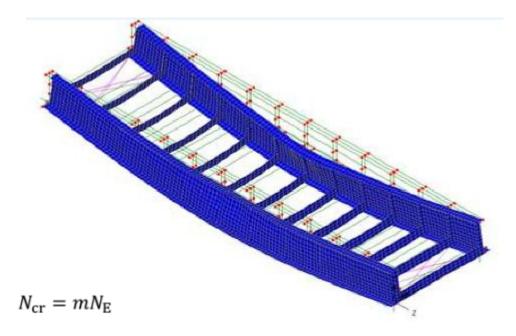
$$F_{\rm Ed} = \frac{N_{\rm Ed}}{100} \qquad \text{if } L_{\rm cr} \le 1.2 \, d_{\rm s}$$

$$F_{\rm Ed} = \frac{N_{\rm Ed}}{N_{\rm cr} - N_{\rm Ed}} \times \frac{C_{\rm d} \, L_{\rm w}}{500} \qquad \text{if } L_{\rm cr} > 1.2 \, d_{\rm s}$$
(8.5)


where

$$L_{\rm cr} = \pi \sqrt{\frac{EI}{N_{\rm cr}}}$$

 $L_{\rm w}$ is the half wavelength of buckling determined by taking $L/L_{\rm w}$ as the next integer below $L/L_{\rm cr}$ but not less than unity;


Examples from EN 1993-2 Bracing design

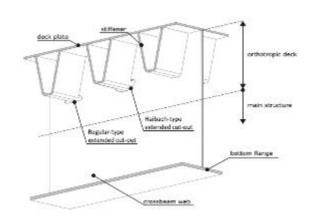
- Current EN 1993-2 force for bracings is too large uses imperfection of approximately L_e/200 for buckling of strut itself
- Revised version uses
 L_w/500 based on the
 actual geometrical bow
 (compatible with bow in
 EN 1993-1-1-), but also
 over half-wavelength not
 effective length
- BS5400 used $L_{\rm w}$ / 667

Examples from EN 1993-2 Elastic buckling moment

- The calculation of critical flange force, based on buckling factor "m", in EN1993-2 clause 6.3.4.2 did not cover the possibility of there being no rigid restraints at beam supports
- Cautionary note added: If there are no rigid lateral supports at girder ends to define the length *L*,
 , the value of *m* should be modified in the last half wavelength of buckling to allow for the end restraint flexibility in accordance with elastic buckling theory
- A formula for *m* adjusted in this way is provided in section 9 of the BSI document PD 6695-2:2008 Recommendations for the design of bridges to BS EN 1993

where

$$N_{\rm E} = \pi^2 \frac{EI}{L^2}$$


$$m = \frac{\sqrt{\gamma}}{\left(\frac{\pi}{\sqrt{2}} + \frac{0.69}{X + 0.5}\right)^2};$$

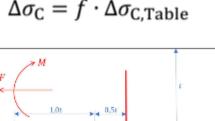
with
$$X = \frac{C_{\rm e}}{\sqrt{2}} \left(\frac{l^3}{C_{\rm d}^3 EI}\right)^{0.25}$$
 and $C_{\rm e}$ is the stiffness of the end support

determined in the same way as the stiffness of intermediate supports, C_d , other terms are as defined in BS EN 1993-2:2006, **6.3.4.2**.

Examples from EN 1993-2 Fatigue of orthotropic plates

- Fatigue calculations and classifications for orthotropic decks covered in - CEN/TC 250/TS 1993-1-901
- This provides a more detailed assessment approach than provided in EN 1993-2 Annex C based on hot spot stress method for toe cracking and nominal stress for weld cracking
- Different details for toe cracking have categories based on 100 MPa x f:

CEN/TC 250


Date: 20XX -XX

prTS 1993-1-901

Secretariat: XXX

CEN/TC 250/TS 1993-1-901 — Fatigue design of orthotropic bridge decks with the hot spot stress method

> Einführendes Element — Haupt-Element — Ergänzendes Element Élément introductif — Élément central — Élément complémentaire

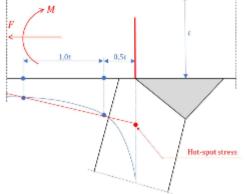
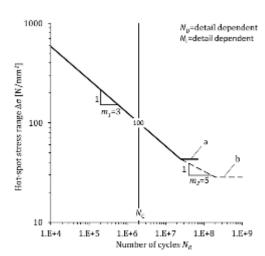
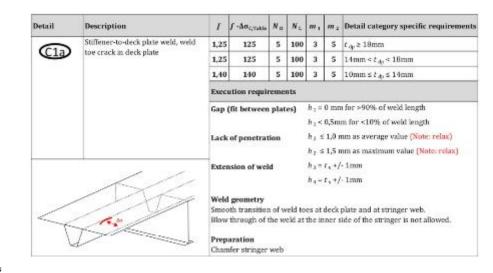
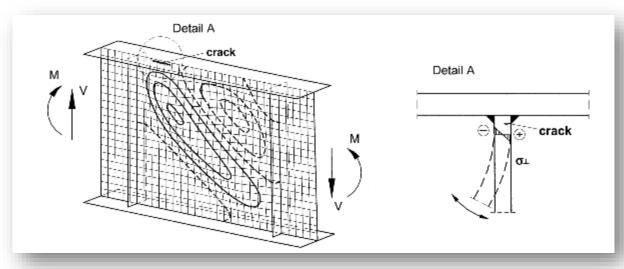
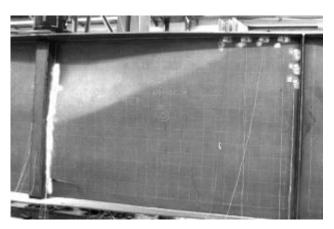
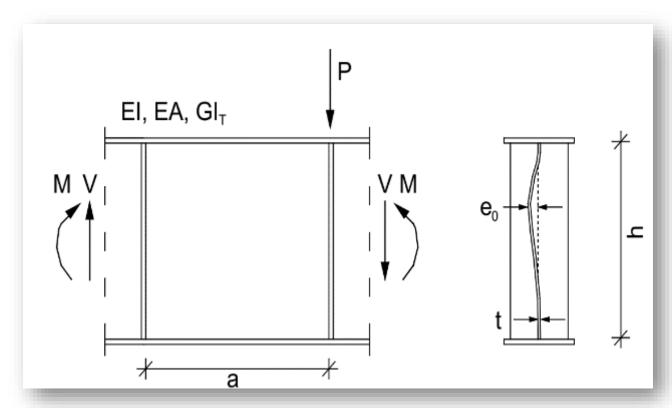


Figure 6.1: Hot-spot stress for single sided welds where a crack initiates from the root into a plate, example for linear extrapolation with "fine" mesh model.


Figure 7.1: Characteristic fatigue resistance curves for single sided welds where a crack initiates from the root into a plate.

- Slender webs contain initial out-of-plane geometric imperfections which grow under action of in-plane bending and shear stresses
- Stresses in slender webs of steel plate girders can exceed the linear elastic buckling stresses - then relatively large out-of-plane deformations of the web plate may result
- Out-of-plane cyclic deformation known as web breathing can initiate fatigue cracks



Introduction to web breathing

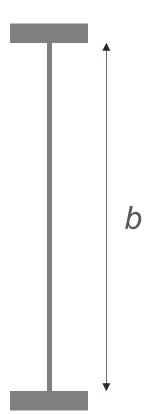
The magnitude of web breathing is complex nonlinear calculation dependent on very many parameters, including:

- Panel length, a
- Panel height, h
- Web thickness, t
- Panel aspect ratio $\alpha = a/h$
- Web slenderness $\beta = h/t$
- Shape and magnitude of initial web geometric imperfection, *e*₀
- Magnitude of in-plane direct stresses, σ_0 , and shear stresses, τ_0 , produced by M and V
- Boundary stiffnesses: bending stiffness *EI*, normal stiffness *EA* and torsional rigidity *GI*T

• Large number of parametric studies conducted on typical highway and railway bridges; simple slenderness limitations were derived for longitudinally unstiffened web panels

7.4 Limitation of web breathing

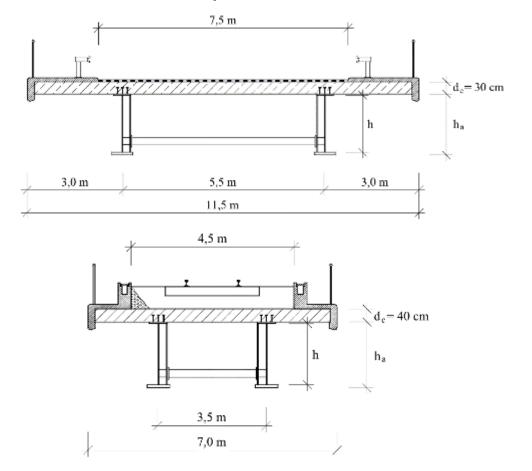
(1) The slenderness of web plates should be limited to avoid excessive breathing that might result in fatigue at or adjacent to the web-to-flange connections.

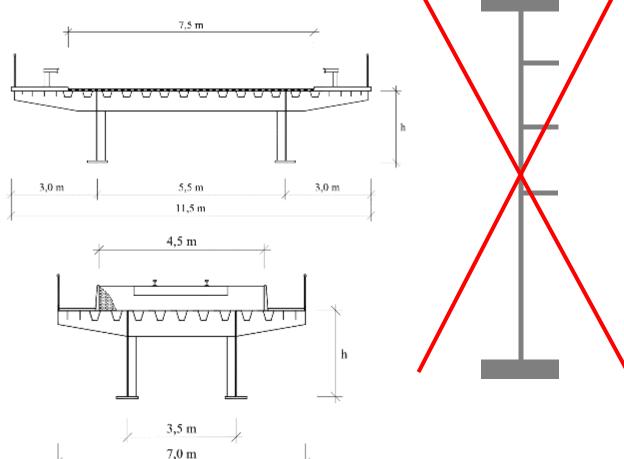

NOTE: The National Annex may define cases where web breathing checks are not necessary.

(2) Web breathing may be neglected for web panels without longitudinal stiffeners or for subpanels of stiffened webs, where the following criteria are met:

$$b/t \le 30 + 4.0 L \le 300 \qquad \text{for road bridges} \tag{7.5}$$

$$b/t \le 55 + 3.3 L \le 250$$
 for railway bridges (7.6)


where L is the span length in m, but not less than 20 m.



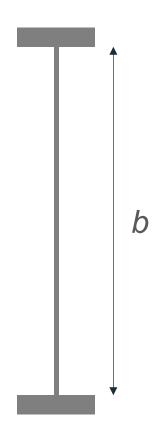
 Study looked at typical bridge geometries/spans and web slenderness h/t and evaluated both fatigue (due to in-plane and out-of-plane deformations) and ULS conditions

But longitudinally stiffened webs were not considered – the sub-panels and overall

stiffened web panel had to meet a more complex interaction check

- Webs that were non-compliant with simple rules (including those with longitudinal stiffeners) needed to be checked with a more complex approach that was very conservative:
- (3) If the provision in (2) is not satisfied web breathing should be checked as follows:

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma}\sigma_{E}}\right)^{2} + \left(\frac{1,1\tau_{x,Ed,ser}}{k_{\tau}\sigma_{E}}\right)^{2}} \le 1,1$$
(7.7)


where $\sigma_{x,Ed,ser}$, $\tau_{Ed,ser}$ are the stresses for the frequent load combination. If the stresses are not uniform along the length of the panel, see section 4.6(3) of EN 1993-1-5;

 k_{σ} , k_{τ} are the linear elastic buckling coefficients assuming hinged edges of the panel, see EN 1993-1-5;

$$\boxed{\text{AC}_1} \quad \sigma_E = 190000 \left(\frac{t}{b_p} \right)^2 \quad [N / mm^2] \quad \text{(AC}_1$$

 $b_{\rm p}$ is the smaller of a and b.

NOTE: For stresses varying along the panel see EN 1993-1-5, 4.6(3).

Examples from EN 1993-2 Web breathing

9.4 Limitation of web breathing

(1) The slenderness of web plates should be limited to avoid excessive breathing that might result in fatigue at or adjacent to the web-to-flange connections.

NOTE The National Annex can define cases where web breathing checks are not necessary.

(2) Web breathing may be neglected for unstiffened panels where the condition (9.5) or (9.6) is met:

$$b_{\rm p}/t \le 30 + 4.0 \ L \le 300$$
 for road bridges (9.5)

$$b_{\rm p}/t \le 55 + 3.3 \ L \le 250$$
 for railway bridges (9.6)

where

- bp is the width of the panel
- t is the thickness of the panel
- L is the span length in metres, but not less than 20 m.
- (3) Web breathing may be neglected for longitudinally stiffened web panels with a relative stiffness $\gamma_{st,i}^*$ according to EN 1993-1-5, 6.5.1(5) greater than 25, where the condition (9.5) or (9.6) is met for each subpanel, assuming b as the width of the subpanel.

- More recent study has now considered longitudinally stiffened girders
- No need now to consider conservative alternative method to consider overall stiffened panel if sub-panels also meet (9.5)/(9.6) and stiffeners meet minimum stiffness requirement

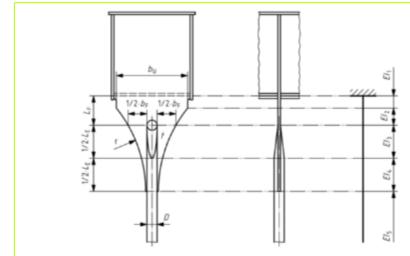
(3) If the provision in (2) is not satisfied web breathing should be checked as follows:

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma}\sigma_{E}}\right) + \left(\frac{11}{k_{\tau}\sigma_{E}}\frac{\tau_{x,Ed,ser}}{\delta_{E}}\right)^{2}} \le 1,1$$
(7.7)

where $\sigma_{x,Ed,ser}$, $\tau_{Ed,ser}$ are the stresses for the requent load combination. If the stresses are not uniform along the length of the panel, see section 4.6(3) of EN 1993-1-5;

 k_{σ} , k_{τ} are the linear elastic buckling coefficients assuming hinged edges of the panel, see EN 1993-1-5;

$$\sigma_E = 190000 \left(\frac{t}{b_p} \right)^2 [N/mm^2] \left(\frac{AC_1}{a} \right)$$


 $b_{\rm p}$ in the smaller of a and b.

NOT:. For stresses varying along the panel see EN 1993-1-5, 4.6(3).

Examples from EN 1993-2 New Annex A for Design of hangers for tied-arch bridges

Covers:

- Deemed to satisfy geometry for which no fatigue check needed
- Fatigue from cable vortex shedding, wind-rain, galloping and traffic addressed
- Design rules for:
 - Welded round bar hangers
 - Flat steel plates
 - Ropes
- But rules very prescriptive in terms of adherence to geometry
- Were originally normative and now informative rules

Kev:

Diameter of hanger: $D = 2\sqrt{\frac{N_{\text{mi}}}{\pi}}$

Thickness of gusset plate: t = 0, 2

Width at cope hole level: $b_y = \frac{N_{\text{max}}}{\sigma_{\text{net}}}$

Embedded length: $L_E = \frac{N_{max}}{2 r t}$

Maximum width of plate: $b_U = 1.5 (b_F + D)$

Outside radius: $r = 1.9 \left(\frac{L_{\rm E}^2}{b_{\rm F}} + 0.25 \ b_{\rm F} \right)$

Clear height of gusset plate: $L_F = 0.45 L_E$

where

Some is the maximum axial force acting on the hanger at the ultimate limit state due to the persistent design situation according to 3.2 of EN 1990;

- Relatively inexpensive to construct today, more aesthetic than straight, in demand in congested urban area
- Absence of any codified guidance in the Eurocodes
- M_{Rd} and V_{Rd} affected by curvature and "T_{Ed}" introduced

New rules developed through European

RFCS project

Published in ICE
 Bridge Engineering
 journal

Annex B (normative)

Supplementary rules for the design of plate girders curved in plan with rigid restraints to the compression flange

B.1 Use of this annex

This Normative Annex con curved in plan.

B.2 Scope and field of a

- (1) This Normative Annex cov
- The top flange has continue
- The bottom flange is brace
- The web is stiffened by rig
- There are no longitudinal
- There are no concentrated construction before the de
- The flange curvature paral
- The web curvature parameter

B.3 Bending resistance

(1) For plate girders with uni z_f should be calculated accordi

$$z_{\rm f} = \frac{L_{\rm R}^2}{R_{\rm R} b_{\rm c}}$$

where

 L_R is the spacing of the along the beam axis;

 $R_{\rm B}$ is the radius of the b

 b_c is the width of comp

New design rules for plate girders curved in plan

Chris R. Heredy MAContaid, Cing, RCE, Riting, Baring Haud of Intigs Engineering, Addin StiCcurolin, Epson, UK (Smith Concord) - Mindelling Minight Call String, PAC, MESSACE Production from Mining Systematic, Glascon, UK

Bridge Engineering

(conceptually suffer missis calibration global cont) (Decision) 4604-4604-7047) Bollin Pedino Martine, Hito Academi Researche, 1989, Chil Triginerring Department, Universitate de Control, Calindra, Paracola Filip Ljubinković MSc HO suden, Recking Auktant, ISEC, CM Engineering Department, Identication to Commission, Commiss, Philappi (Drick)0000-0000-7006-7052)

ice Publishing

Luis Simbles de Silve PhD, DC Profesor, 1957, DAI Engineering Separtment, Universidade de Calmbra, Calmbra, Portugal (Desir 0000-000 1-7/29-0905)

Many steel plate girder bridges today are curved in plan. This is because it is now relatively inexpensive to construct bridges with continuous plan curvature, which is more seathed: than the modificated series of ensight genes kinked at supports, and because many indiges are more liabil in congested whom across where complex curved plan alignments are required to thread new infrastructure part the existing, litowest, design rules have not caught up with this fabrication need. The design of continuously curved used plans glober bridges is triplically more complex than that for equivalent straight once. The plan curvature both induces additional stresses in the works and florages, reducing overall bending strength, and changes the share behaviour and mobilature of the works. This page constructive typical steel-concrete composite multi-girder decks with plan curvature and uses the results of an extensive fishes-element parameteric making to propose new design rates based on modifications to the existing fluorodes fact for straight girden so there is a consistent approach provided for the design of glated girden for all curvatures.

A_k , A_k , B_k , B_c , C_k parameters for shear backling strength. spacing of transvene stiffeners width of composition flange modulus of steel transverse initial imperfection yield strength web yield strength web bright radius of gyration parameters for shear strongth pacing of centres of rigid lateral vestu to the compression flancy design values of the buckling resistance bending menerals clartic critical moment for late design value of bending momen radius of beam in plandesign value of torsional momen web thickness design value of about buckling resistance design value of shear force effective section modulus of the member

clastic section modulus of the member

slatic section modulus of the member

appropriate section modulus parameter chosen to fit experimental half the flange width web curvature parameter compression flange curvature parameter ratio of bending resistance partial factor for resistance of members to instability assessed by member checks imperfection paramete non dimensional denderness signiferness for lateral-torsional backling design value of the direct stress design value of the shear street reduction factor for lateral-torsional buckling for finite analysis) value to determine the reduction factor you

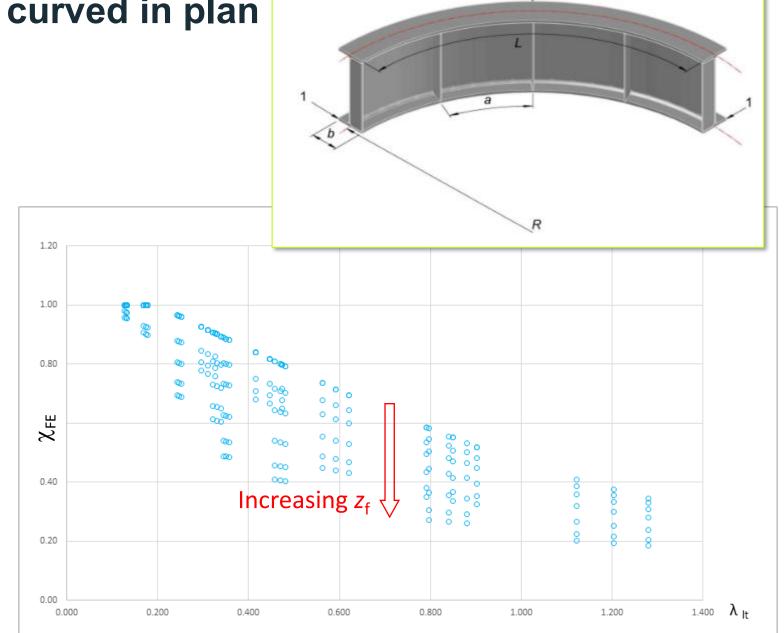
reduction factor for lateral-torsional

Introduction

Many sted plate girder bridges today are curved in plan. This is because it is now relatively inexpensive to construct bridges

buckling

.


Bending

• Curvature factor: Z_f

$$Z_f = \frac{L^2}{R \cdot B_f}$$

L Lateral support spacing; R Radius of girder in plan; $B_{\rm f}$ Flange width (b in figure); a Transverse stiffener spacing; $t_{\rm w}$ Web thickness.

• Results χ_{FE} show effect of curvature at a given slenderness

B.3 Bending resistance

(1) For plate girders with uniform curvature in plan, the compression flange curvature parameter z_f should be calculated defined according to Formula (B.1):

$$z_{\rm f} = \frac{L^2}{R h} \tag{B.1}$$

where:

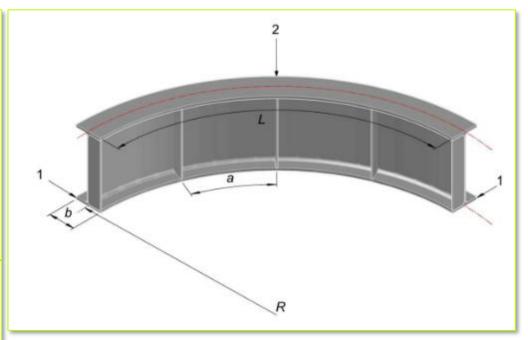
L is the spacing of the centres of rigid lateral restraints to the compression flange; see Figure B.1;

R is the radius of the beam web axis in plan; see Figure B.1;

b is the width of compression flange.

(2) Where $z_f \le 0.2$, the beam may be treated as straight for the purposes of determining lateral torsional buckling resistance.

(3) Where $0.2 < z_f \le 9.0$, the design buckling resistance should be determined in accordance with EN 1993-1-1, 8.3.2, but with Φ_{LT} calculated according to Formula (B.2):

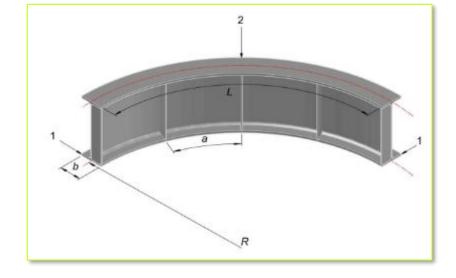

$$\Phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\bar{\lambda}_{LT} - 0.2) + C_{zf} z_f + \bar{\lambda}_{LT}^2 \right]$$
(B.2)

where C_{zf} has the following values:

$$C_{\rm zf} = 0.2$$
 for $z_{\rm f} \leq 4$

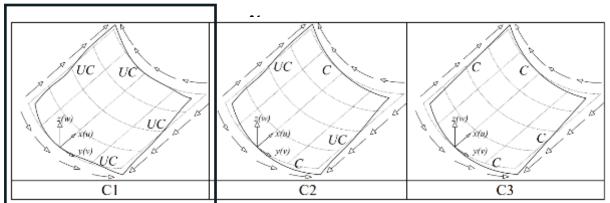
$$C_{\rm zf} = 0.25$$
 for $4 < z_{\rm c} \le 9$

(4) When determining the relative slenderness $\overline{\lambda}_{LT}$ in accordance with 8.3.2 of EN 1993-1-1, the elastic critical moment, M_{cr} , should be calculated for either the curved girder or an equivalent straight girder with the same restraints and restraint spacings.


Shear

Curvature factor: Z_a

$$Z_a = \frac{a^2}{R \cdot t}$$


Radius of girder in plan;
 a Transverse stiffener spacing;
 t Web thickness.

 Study looked at different boundary conditions but case without membrane restraint used in new rules

Typical "rigid end post" case for webs

of girders curved in plan is straight

BC: All simply supported (vertical) edges forced to remain straight – so C1 conservative

C1 – Edges free to wave

C2 – Curved edges forced to remain straight

C3 – All edges forced to remain straight

Shear

Curvature factor: Z_a

$$Z_a = \frac{a^2}{R \cdot t}$$
 If $Z_a \le 1.0$ then treat as flat

R Radius of girder in plan;

a Transverse stiffener spacing;

t Web thickness.

 Study looked at different boundary conditions but case without membrane restraint used in new rules Add new paragraphs to clause 7.1 of EN 1993-1-5 as follows:

(4) For beams with curvature in plan, the web curvature parameter Z_a shall be defined as follows:

 $Z_{\alpha} = \frac{\alpha^2}{Rt}$

wher

R is the radius of the beam in plan

- (5) Where Z_α ≤ 1.0, the design shear buckling resistance may be determined in accordance with 5.1(1).
- (6) Where $Z_a > 1.0$, the design shear buckling resistance may be taken as:

$$V_{b,Rd} = V_{bw,Rd} = \chi_w h_w t \frac{f_{yw}}{\sqrt{3}\gamma_{M1}}$$

where χ_w is determined as follows:

$$\begin{array}{ll} \chi_w = 1.0 & \text{for} & \overline{\lambda}_w \leq \overline{\lambda}_{w,0} \\ \chi_w = A_\chi \overline{\lambda}_w^2 + B_\chi \overline{\lambda}_w + C_\chi & \text{for} & \overline{\lambda}_{w,0} < \overline{\lambda}_w < 1.1 \\ \chi_w = \frac{A_\chi}{B_\chi + \overline{\lambda}_w} & \text{for} & 1.1 \leq \overline{\lambda}_w \leq 3.0 \end{array}$$

where
$$\overline{\lambda}_{w,0} = \begin{cases} 0.4, & Z_a \leq 30 \\ 0.3, & Z_a > 30 \end{cases}$$

and A. B. and C. should be taken from Table (i).

Table (i): Ax, Bx and Cx parameters

$\overline{\lambda}_{w,0} < \overline{\lambda}_w$ < 1.1	$A_{\chi} = -\frac{Z_a}{57.7} - 0.48$ $B_{\chi} = \frac{Z_a}{86} + 0.25$	$C_{\chi} = -\frac{Z_{\alpha}}{367} + 1.0$
$1.1 \leq \overline{\lambda}_{\rm w} \leq 3.0$	$A_{\chi} = \frac{335.5 - Z_a}{380}$	$B_{\chi} = \frac{3.7 + Z_a}{47.5}$

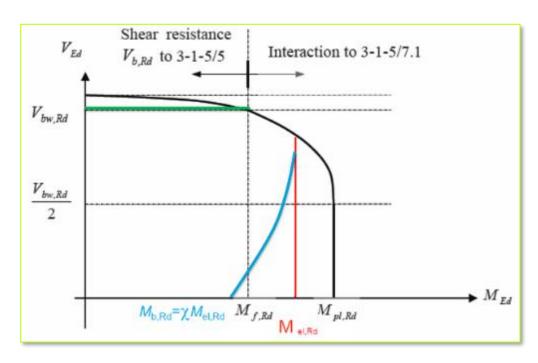
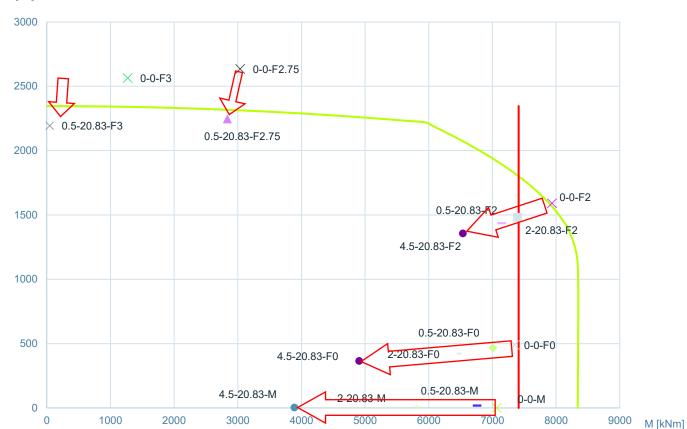
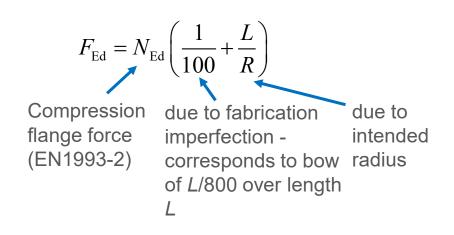
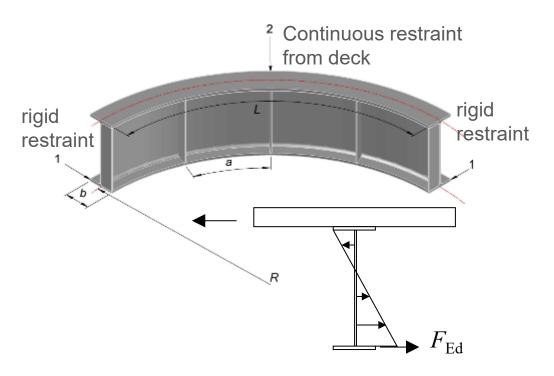

(7) The slenderness $\overline{\lambda}_{w} = \frac{a/\epsilon}{37.4\epsilon\sqrt{k_{\tau}Z_{d}}}$ with $k_{\tau,Z_{d}} = A_{k} + B_{k} \left(\frac{1}{\alpha}\right)^{2}$ and A_{k} and B_{k} taken from Table (ii) where $\alpha = \frac{h_{W}}{a}$.

Table (ii): A_k and B_k parameters


$\alpha \leq 1$	$A_k = 0.214Z_a + 2.88$	$B_k = 5.343 - \frac{Z_a}{175.6}$
$\alpha > 1$	$A_k = 0.096Z_a + 5.15$	$B_k = 0.135 Z_a + 3.18$

Shear – moment interaction


 Uses interaction for straight girders with resistance for curved girders



Effect of increasing girder curvature and/or flexural slenderness

- Updated to include design force for **rigid** restraints to curved in plan compression flanges
- Restraints should be designed for the forces developed resisting the lateral buckling deflections of the flange, considering both initial intended curvature and geometrical imperfections
- The force, $F_{\rm Ed}$, to apply to each discrete rigid compression flange restraint, with spacing L, may conservatively be calculated by introducing the additional compression flange bow from intended plan radius, R, into EN 1993-2 clause 6.3.4.2(5) as follows:

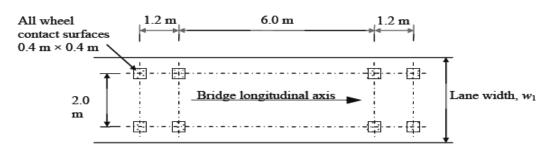
Examples from EN 1993-2 Amended Annex D – buckling effective lengths removed

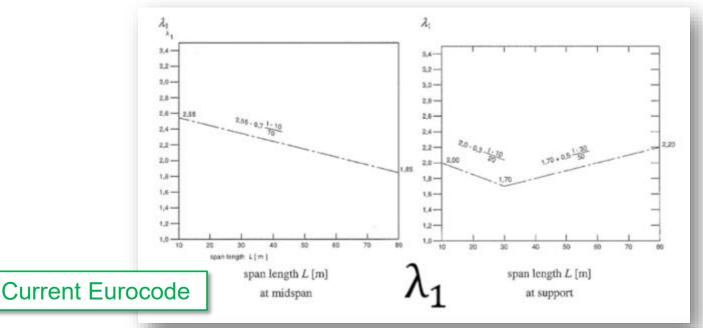
Content

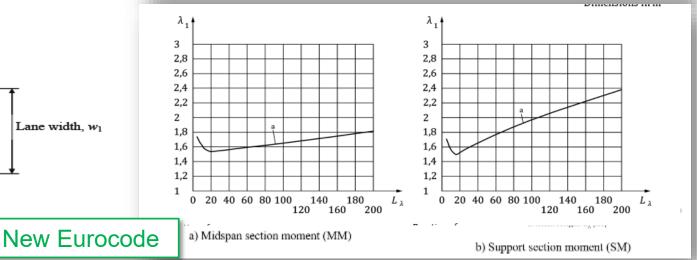
Covers:

- Only imperfection for arches now covered
- All buckling critical forces moved to CEN Technical Report

1	Symbols	
1.1	Loads and load parameters	
1.2	Cross-section sizes	
1.3	Material Parameter	
1.4	Sectional stiffnesses	
1.5	Indices	
1.6	Parameters and boundary conditions of the structural system	
1.7	Deformation	
1.8	Buckling loads and parameters	
2	Introduction	1
3	Flexural buckling	
3.1	General	
3.1.1	Flexural buckling without influence of shear	
3.1.2	Flexural buckling with influence of shear	!
3.2	Definition of sway and non-sway.	1
3.3	Single members and members in non-sway frames.	
3.3.1	Simple members (hinged, rigid, clastic supported)	
3.3.2	Members with variable axial forces	
3.3.3	Single span members with elastic supported ends	43
3.3.4	Continuous members	17
3.3.5	Non-prismatic members	
3.3.6		
0.10.10	Crossing members Sway single members and members in sway frames	
3.4		
3.5	Truss structures	
3.5.1	Members with unsway supported ends	4
3.5.2	Membes with λ eff λ eff, $v = 0.35 + 0.7\lambda x\lambda$ eff, $y = 0.50 + 0.7\lambda y\lambda$ eff, $z = 0.50 + 0.7\lambda x\lambda$ eflow sections	41
3.5.3	Members of Irusses in unsway frames	
3.5.4	Members of trusses in sway frames	
3.5.5		
	Out of plane buckling of diagonals	
3.5.6	Compression chords of open bridges	
3.6	Members of arch structures including bridges	
3.6.1	In plane buckling of arches	
3.6.2	Out of plane buckling of free standing arches	
3.6.3	Out of plane buckling of arches with wind bracing and end portals	
3.6.4	Out of plane buckling of circular arcs with constant rectangular or I-shaped cross-section	
3.7	Compression members with discrete elastic restraints	
3.7.1	General	52
3.7.2	Buckling lengths for compression members with dicrete elastic restraints (elastic	-
	springs)	
3.8	Compression members with continuous elastic restraint (elastic bedding)	
3.8.1	General	5
3.8.2	Buckling lengths for compression members with continuous elastic restraint (elastic bedding)	5
4	Torsional and torsional flexural buckling of members in compression	
1.1	General	
4.2	Members with point and doubly symmetric open cross sections	6
4.3	Members with mono symmetric open cross sections	
4.3.1	The stenderness λ_{TF} and critical force $N_{C,TF}$ for torsional-flexural buckling	
4.3.2	Elastic critical axial force for torsional-flexural buckling N _{2,11} .	
4.4	Members with cross sections without axis of symmetry	
4.5	Members with cross sections without axis or symmetry Members with continuous lateral restraint and torsional bedding	
	· ·	
5	Lateral torsional buckling	
5.1	General	86


CEN/TR 1993-1-103


Eurocode 3 – Design of Steel Structures – Part 1-103: Elastic Critical Buckling of Members


5.2	Bearns with double-symmetric cross-sections	66
5.2.1	Simply supported single span beams	66
5.2.2	Simply supported continuous beams	74
5.2.3	Cantilever beams	74
5.2.4	Clamped beams	58
5.2.5	Single span beams with specific support conditions	60
5.3	Beams and cantilevers with mono-symmetric cross-section	88
5.3.1	General	
5.3.2	General formula for beams with uniform cross-sections symmetrical about the minor or	
	major axis	88
5.3.3	Beams with uniform cross-sections symmetrical about major axis, centrally symmetric	
	and doubly symmetric cross-sections	91
5.3.4	Cantilevers with uniform cross-sections symmetrical about the minor axis	95
5.4	Transversely coupled beams	98
6	Boundary conditions, stiffness of springs and beddings	400
		100
•		
6.1 6.2	General	100
6.1 6.2	General. Fork support conditions.	100
6.1 6.2 6.3	General. Fork support conditions. I-beams with discrete intermediate torsional restraints.	100 100
6.1 6.2 6.3 6.4	General. Fork support conditions	100 100 100
6.1 6.2 6.3	General. Fork support conditions I-beams with discrete intermediate torsional restraints	100 100 100 104
6.1 6.2 6.3 6.4 6.5	General. Fork support conditions	100 100 100 104 105
6.1 6.2 6.3 6.4 6.5 6.5.1	General. Fork support conditions I-beams with discrete intermediate torsional restraints. Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings General. Resistance of rigid supports	100 100 104 105 105
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2	General. Fork support conditions I-beams with discrete intermediate torsional restraints. Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings. General.	
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3	General. Fork support conditions I-beams with discrete intermediate torsional restraints Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings. General. Resistance of rigid supports. Stiffness of rigid supports	100 100 100 104 105 105 105 106 106
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.4	General. Fork support conditions I-beams with discrete intermediate torsional restraints. Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings. General. Resistance of rigid supports. Stiffness of rigid supports. Resistance of spring supports.	100 100 100 104 105 105 105 106 109
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5	General. Fork support conditions I-beams with discrete intermediate torsional restraints Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings General. Resistance of rigid supports Stiffness of rigid supports Resistance of spring supports Effective spring supports Effective spring supports	
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.6.7	General. Fork support conditions I-beams with discrete intermediate torsional restraints. Lateral restraints against lateral torsional buckling Translational spring stiffnesses and beddings. General. Resistance of rigid supports. Stiffness of rigid supports. Resistance of spring supports. Effective spring stiffness of spring supports. Rotational spring stiffnesses and beddings.	

Examples from EN 1993-2 New Annex F for fatigue damage equivalent factors for road bridges

- Current lambda factors for damage equivalent stress determination have no obtainable background – BGN152
- Recent studies show they are not accurate (don't account for influence of axles at short span) and are not defined above 80 m
- Mostly safe-sided, but not always, and sometimes follow wrong trend!

Eurocodes – the second generation

Examples from EN 1993-1-11

Moderate change

Eurocode is not yet published by BSI

Com	ents	rage
Europ	ean foreword	5
0	Introduction	6
1	Scope	9
1.1	Scope of EN 1993-1-11	9
1.2	Assumptions	9
2	Normative references	9
3	Terms, definitions and symbols	10
3.1	Terms and definitions	
3.1.1	Components and elements	
3.1.2	Material proprieties	
3.1.3	Manufacturing and installation	
3.2	Symbols	
3.2.1	General	
3.2.2	Latin upper-case symbols	
3.2.3	Latin lower-case symbols	
3.2.4	Greek upper-case symbols	
3.2.5	Greek lower-case symbols	
3.3	Groups	16
4	Basis of design	
4.1	General rules	
4.1.1	Basic requirements	
4.1.2	Structural reliability	
4.2	Principle of limit state design	
4.3	Basic variables for actions	
4.3.1	Self-weight of tension components	
4.3.2	Wind actions	
4.3.3	Ice loading	
4.3.4	Thermal actions	
4.3.5	Prestressing	
4.3.6 4.3.7	Fatigue loads	
4.3.7 4.4	Verification by the partial factor method	
5	Material	20
5.1	General	20
5.2	Group A tension elements	20
5.2.1	Nominal tensile strength and nominal yield strength	20
5.2.2	Modulus of elasticity	20
5.2.3	Creep and relaxation	
5.3	Group B tension elements	21
5.3.1	Nominal tensile strength grade of steel wires	21
5.3.2	Modulus of deformation	
5.3.3	Creep and relaxation	
5.3.4	Friction coefficients	
5.4	Group C tension elements	
5.4.1	Nominal tensile strength grade of steel wires and strands	
5.4.2	Modulus of elasticity	23
5.4.3	Creep and relaxation	
5.4.4	Friction coefficients	23

	6	Durability	24
	7	Structural analysis	24
	7.1	General	
	7.2	Nonlinear effects from deformations	24
	7.3	Nonlinear analysis	25
	7.4	Dynamic analysis	
	7.5	Aerodynamic instability	26
	8	Ultimate limit states	26
	8.1	General	
	8.2	Group A tension components	
	8.2.1	Tension rod system made of structural steel or stainless steel	
	8.2.2	Tension rod system made of concrete reinforcement steel or prestressing steel	
	8.3 8.4	Group B tension components Group C tension components	
	8.5	Saddles	
	8.5.1	General	
	8.5.2	Group B tension components	
	8.5.3	Group C tension components	
	8.6	Clamps	36
	8.6.1	General	
	8.6.2	Prevention of slipping of clamps	
	8.6.3	Transverse pressure	40
	9	Serviceability limit states	
	10	Fatigue	
	10.1	General	
	10.2 10.3	Terminations	
j	11	Testing	43
ļ		A (normative) Product and test requirements for tension components	
ì	A.1	Use of this annex	44
ļ	A.2	Scope and field of application	
Ş	A.3	Group A tension components	44
!	A.4	Group B tension components	
	A.5	Group C tension components	53
		B (informative) Glossary	
	B.1	Use of this annex	63
	B.2	Scope and field of application	63
	B.3	Group A tension components	64
	B.4	Group B tension components	68
	B.5	Group C tension components	72
	B.6	Group D parallel wire tension components for suspended structures	75
	Annex	C (normative) Additional rules for Group D parallel wire tension components	for
		suspended structures	
	C.1	Use of this annex	77

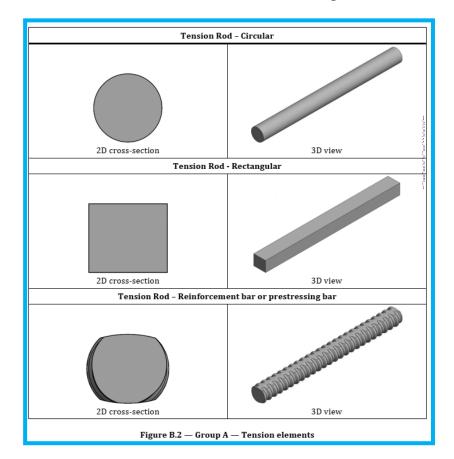
Lots of minor changes:

- Impact factor to consider for sudden loss of cable – taken as 2.0 unless other value justified e.g. time history analysis (was 1.5)
- Improvements in grouping of cable types

Group	Tension element	Tension component
	rod	tension rod system made of structural steel or stainless steel
A		tension rod system made of concrete reinforcement steel
		tension rod system made of prestressing steel
	rope made of circular wire	spiral strand rope with terminations
В	rope made of circular wire and stranded wire	stranded rope (type IWRC or WSC) with terminations
	rope made of circular and Z-shaped wires	full-locked coil rope with terminations
	bundle made of circular prestressing wires	parallel wire system (PWS)
С	bundle made of 7-wire prestressing strands	parallel strand system (PSS)

D	Suspension bridge cables (new Annex C	Parallel wire system
---	---------------------------------------	----------------------

(5) The analysis may be performed by applying opposing forces, including dynamic amplification, at both terminations of the lost tension component(s) or, in case of linear system behaviour, by superposition of design values, including the dynamic amplification, as per the following formulae:

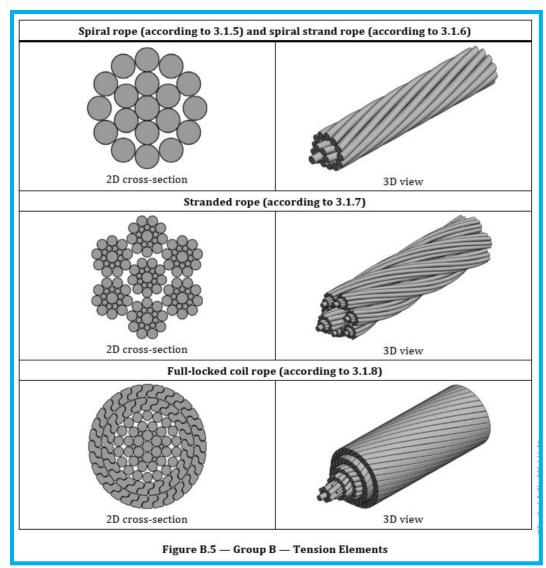

$$\Delta E_{\rm d} = k \left(E_{\rm d2} - E_{\rm d1} \right) \tag{4.1}$$

$$E_{\rm d} = E_{\rm d1} + \Delta E_{\rm d} \tag{4.2}$$

where

- ΔE_d represents the dynamic effect of an accidental loss of the tension component(s);
- $E_{\rm d1}$ represents the design value of the effect of the action with all tension component(s) intact:
- E_{d2} represents the design value of the effect of the action with the relevant tension component(s) removed;

NOTE 1 The value of k is 2,0 unless the National Annex gives a different value.



Lots of minor changes:

- Impact factor to consider for sudden loss of cable – taken as 2.0 unless other value justified e.g. time history analysis (was 1.5)
- Improvements in grouping of cable types

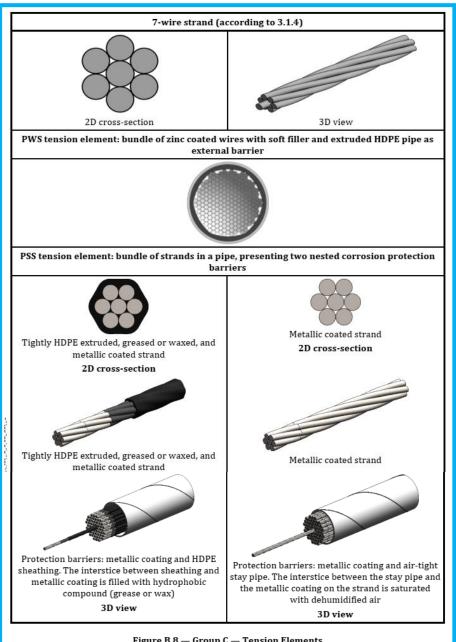
Group	Tension element	Tension component
		tension rod system made of structural steel or stainless steel
A	rod	tension rod system made of concrete reinforcement steel
		tension rod system made of prestressing steel
	rope made of circular wire	spiral strand rope with terminations
В	rope made of circular wire and stranded wire	stranded rope (type IWRC or WSC) with terminations
	rope made of circular and Z-shaped wires	full-locked coil rope with terminations
6	bundle made of circular prestressing wires	parallel wire system (PWS)
С	bundle made of 7-wire prestressing strands	parallel strand system (PSS)
D	Suspension bridge cables (new	Parallel wire system

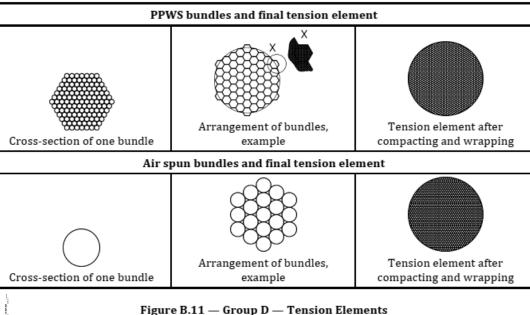
l	Suspension bridge cables (new Annex C	Parallel wire system
---	---------------------------------------	----------------------

Lots of minor changes:

- Impact factor to consider for sudden loss of cable - taken as 2.0 unless other value justified e.g. time history analysis (was 1.5)
- Improvements in grouping of cable types

Group	Tension element	Tension component
		tension rod system made of structural steel or stainless steel
A	rod	tension rod system made of concrete reinforcement steel
		tension rod system made of prestressing steel
	rope made of circular wire	spiral strand rope with terminations
В	rope made of circular wire and stranded wire	stranded rope (type IWRC or WSC) with terminations
	rope made of circular and Z-shaped wires	full-locked coil rope with terminations
C	bundle made of circular prestressing wires	parallel wire system (PWS)
C	bundle made of 7-wire prestressing strands	parallel strand system (PSS)
D	Suspension bridge cables (new Annex C	Parallel wire system




Figure B.8 — Group C — Tension Elements

Lots of minor changes:

- Impact factor to consider for sudden loss of cable – taken as 2.0 unless other value justified e.g. time history analysis (was 1.5)
- Improvements in grouping of cable types

rope made of circular wire spiral strand rope with terminations rope made of circular wire and stranded wire stranded rope (type IWRC or WSC) with terminations rope made of circular and Z-shaped wires full-locked coil rope with terminations bundle made of circular prestressing wires parallel wire system (PWS)	Group	Tension element	Tension component
reinforcement steel tension rod system made of prestressing steel rope made of circular wire spiral strand rope with terminations rope made of circular wire and stranded wire stranded rope (type IWRC or WSC) with terminations rope made of circular and Z-shaped wires full-locked coil rope with terminations bundle made of circular prestressing wires parallel wire system (PWS)			
rope made of circular wire spiral strand rope with terminations rope made of circular wire and stranded wire stranded rope (type IWRC or WSC) with terminations rope made of circular and Z-shaped wires full-locked coil rope with terminations bundle made of circular prestressing wires parallel wire system (PWS)	A	rod	1
rope made of circular wire and stranded wire stranded rope (type IWRC or WSC) with terminations rope made of circular and Z-shaped wires full-locked coil rope with terminations bundle made of circular prestressing wires parallel wire system (PWS)			tension rod system made of prestressing steel
terminations rope made of circular and Z-shaped wires full-locked coil rope with terminations bundle made of circular prestressing wires parallel wire system (PWS)		rope made of circular wire	spiral strand rope with terminations
bundle made of circular prestressing wires parallel wire system (PWS)	В	rope made of circular wire and stranded wire	stranded rope (type IWRC or WSC) with terminations
		rope made of circular and Z-shaped wires	full-locked coil rope with terminations
	C	bundle made of circular prestressing wires	parallel wire system (PWS)
parallel straint system (F55)	J	bundle made of 7-wire prestressing strands	parallel strand system (PSS)

D	Suspension bridge cables (new	Parallel wire system
	Annex C	

rigare D.11 Group D Tension Diements

Table C.1 — Group D tension components

Group	Tension element	Tension component
D	hexagonal bundle made of parallel circular high strength steel wires	prefabricated parallel wire bundle (strand) with terminations (PPWS)
Д	circular bundle made by arial spinning of parallel circular high strength steel wires	air spun parallel wire bundle with terminations (cable shoes)

- New Annex covering suspension bridge cables
- Covers:
 - Cable strength evaluation
- (1) For the tension component the design value of the tension resistance, F_{Rd} , should be taken as follows:

$$F_{\rm Rd} = \frac{k_{\rm e} F_{\rm uk}}{\gamma_{\rm Mt \, D}} \tag{C.1}$$

where

- is the calculated minimum breaking force $F_{c,min}$ based upon the nominal wire size and wire tensile strength;
- $k_{\rm e}$ is the loss factor for the termination, if relevant, ($k_e \le 1,0$). For metal filled sockets, $k_{\rm e} = 1,0$;

 $\gamma_{\rm Mt~D}$ is the partial factor for group D tension element.

NOTE The partial factor $\gamma_{\rm Mt,D}$ is equal to 1,8 unless the National Annex gives a different value. This value of the partial factor considers the bending stresses over saddles designed according to C.4.3.1.

- Design of saddles
- Design of cable clamps

Annex C

(normative)

Additional rules for Group D parallel wire tension components for suspended structures

C.1 Use of this annex

(1) This Normative Annex contains additional rules for Group D parallel wire tension components for suspended structures, as defined in Table C.1.

Table C.1 — Group D tension components

Group	Tension element	Tension component
	hexagonal bundle made of parallel circular high strength steel wires	prefabricated parallel wire bundle (strand) with terminations (PPWS)
D	circular bundle made by arial spinning of parallel circular high strength steel wires	air spun parallel wire bundle with terminations (cable shoes)

NOTE 1 Examples of tension components for Group D are illustrated in Annex B.

NOTE 2 For Group D the final tension element will usually consist of several bundles that are compacted with use of hydraulic jacks into a circular shape and are then wrapped with a wire of mild steel.

C.2 Scope and field of application

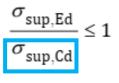
- (1) This Normative Annex covers additional rules for Group D, parallel wire tension components, when used e.g. as main cables for suspension bridges. These rules may also be applied for parallel wire tension components in other types of suspended structures.
- (2) This Normative Annex contains additional rules for the capacity of the parallel wire tension component as well as requirements related to the tension element at saddles and at clamps.

C.3 Materials

C.3.1 Nominal strength grade of steel wires

(1) The nominal tensile strength, $f_{\rm uk}$, should be used for the design of steel wires.

NOTE A maximum value for f_{uk} is given in Table C.2 unless the National Annex gives a different value.


Table C.2 (NDP) — Nominal tensile strength grade of steel wires and references

Non-alloyed steel wire	EN 10264, Part 1 to 3
Recommended maximum values of $f_{ m uk}$	1 770 N/mm ²

Examples from EN 1993-1-11 Fatigue of tension elements

Biggest changes are:

- Different fatigue curves
- SLS limit under *characteristic* combination removed; now SLS stress level $\sigma_{\sup, Ed}$ under *frequent* combination explicitly included in consideration of fatigue

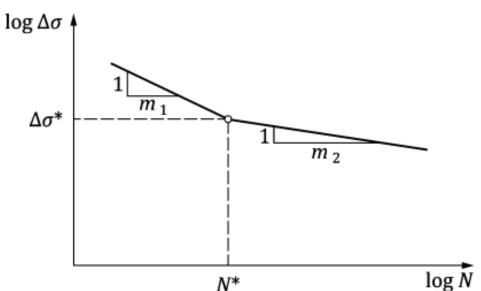


Figure 10.1 — Axial fatigue resistance curve for tension elements

Table 10.1 (NDP) — Detail categories $\Delta \sigma_c$ and axial fatigue resistance curve parameters

Group	Tension element	$\sigma_{ ext{sup,Cd}}/\sigma_{ ext{u,k}}$	N*	m_1	m_2	$\Delta\sigma^*$ N/mm ²	$\Delta\sigma_{\text{C}}$ N/mm ²						
	tension rod made of structural steel or stainless steel		valu	es accor	ding to I	EN 1993-1-9							
A	tension rod made of concrete reinforcement steel with weld/ cut or rolled thread	≤ 0,55	1 × 10 ⁷	3	5	35	60						
	tension rod made of prestressing steel with rolled thread	≤ 0,65	2 × 10 ⁶	5	5	70	70						
	spiral strand rope with metal or resin socketing	≤ 0,45	5 × 10 ⁶	4	6	115	145						
В	stranded rope	There are no validated values – Qualification testing according to Clause 11 is required											
	full-locked coil rope with metal or resin socketing	≤ 0,45	5 × 10 ⁶	4	6	115	145						
		≤ 0,45	2 × 106	4	6	160	160						
	parallel wires / bundle of parallel wires	> 0,45 ≤ 0,55	2 × 10 ⁶	4	6	112	112						
С		≤ 0,45	2 × 10 ⁶	4	6	160	160						
	bundle of parallel strands	> 0,45 ≤ 0,55	1 2 × 106 1 4 1 6 1 112 1										
$\sigma_{u,k} = f_t$ $\sigma_{u,k} = f_{pk}$ $\sigma_{u,k} = F_{uk}$	for group A tension eleme for group A tension eleme $/A_{ m m}$ for group B tension eleme	nts made of p			ent steel								

for group C tension elements

 $\sigma_{u,k} = f_{uk}$

Eurocodes – the second generation

Examples from EN 1993-1-1

Limited change

Eurocode 3 — Design of steel structures — Part 1-1: General rules and rules for buildings

Eurocode 3 — Bemessung und Konstruktion von Stahlbauten — Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

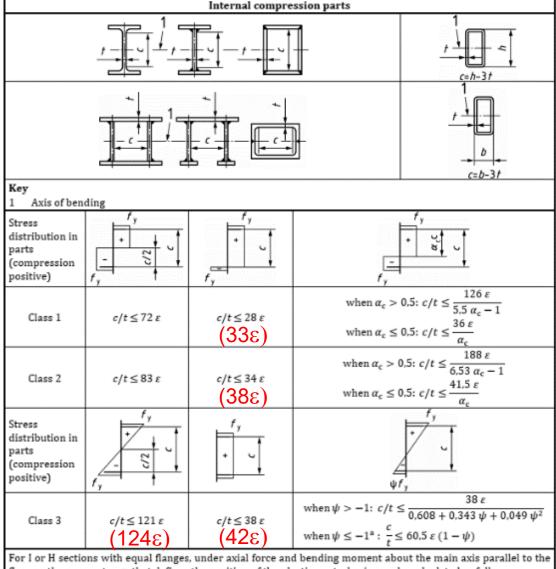
Eurocode 3 — Calcul des structures en acier — Partie 1-1 : Règles générales et règles pour les bâtiments

Eurocode is now published by BSI

Examples from EN 1993-1-1 - materials

- Relatively few reductions to NDPs
- Steel grades to S700 introduced (previously up to S460)
- EN 1993-1-12 to cover up to S960
- EN 1993-1-10 introduces relaxations for fracture toughness considerations of steel structures without significant fatigue crack growth (see BGN 158 - Fracture mechanics methods to select steel sub-grades)

Table 5.1 — Nominal values of yield strength $f_{\rm y}$ and ultimate tensile strength $f_{\rm u}$ for structural steels conforming to the following standards: EN 10025 (all parts), EN 10210 (all parts), and EN 10219 (all parts)


		Nominal thickne	ess of the element												
	t														
		mm													
Steel grade ^a	t ≤ 40	0 mm	40 mm <	< t ≤ 80 mm											
	$f_{ m y}$	$f_{ m u}$	$f_{ m y}$	$f_{ m u}$											
	N/mm ²	N/mm ²	N/mm ²	N/mm ²											
S235	235	360	215	360											
S275	275	390	245	370											
S355	355	490	325	470											
S420	420	510	390	490											
S460	460	540	410	510											
S500	500	580	450	580											
S550	550	600	500	600											
S600	600	650	550	650											
S620	620	700	560	660											
S650	650	700	-	-											
S690	690	770	630	710											
S700	700	750	-	-											
^a Principal symbo	ls in EN 10027-1.														

Examples from EN 1993-1-1 – Section classification

 Section classification limits for internal plates made more onerous generally, and Class 3-4 boundary made compatible with EN 1993-1-5

(XX) = current values in EN 1993-1-1

Table 7.3 — Maximum width-to-thickness ratios for compression parts (sheet 1 of 3)

flanges, the parameter α_0 that defines the position of the plastic neutral axis may be calculated as follows:

If
$$N_{ed} \ge c t_w f_v$$
 $\alpha_c = 1.0$

If
$$N_{ed} \le -c t_w f_v$$
 $\alpha_c = 0$

In other cases:
$$\alpha_c = 0.5 \left(1 + \frac{N_{Ed}}{c t_w f_y}\right)$$

Where N_{Ed} is the design axial force taken as positive for compression and negative for tension.

 $\psi \leq -1$ and a compression stress of $\sigma_{\mathrm{com,Ed}} = f_v$ applies where the tensile strain $\varepsilon_* > f_v/E$

Examples from EN 1993-1-1 – Class 3 behaviour

- New Annex B covering partial plastification of Class 3 doubly symmetric members
- Offsets significance of changing the class boundaries

Annex B

(normative)

Design of semi-compact sections

B.1 Scope and field of application

(1) This Annex provides additional rules for the design of semi-compact (Class 3) doubly symmetric Ior H-sections, rectangular hollow sections, doubly symmetric box sections, circular hollow sections and elliptical hollow sections against mono- and bi-axial bending and axial force.

B.2 Elasto-plastic section modulus

(1) The elasto-plastic section modulus W_{ep} for doubly symmetric cross-sections should be determined from an interpolation between the plastic section modulus and the elastic section modulus about one principal axis of a cross-section as follows:

$$W_{ep,y} = W_{pl,y} - (W_{pl,y} - W_{el,y}) \beta_{ep,y}$$
 (B.1)

$$W_{ep,z} = W_{pl,z} - (W_{pl,z} - W_{el,z}) \beta_{ep,z}$$
 (B.2)

where the values of $\beta_{ep,y}$ and $\beta_{ep,z}$ depend on the material parameter ε and the width-to-thickness ratios as defined in Table 7.3. They should be taken as:

For I- or H- sections, rolled or welded:

$$\beta_{\text{ep,y}} = \text{Max}\left(\frac{\frac{c}{t_{\text{f}}} - 10\varepsilon}{4\varepsilon}; \frac{\frac{c}{t_{\text{w}}} - 83\varepsilon}{38\varepsilon}; 0\right)$$

$$\text{But } \beta_{\text{ep,y}} \leq 1.0$$
(B.3)

$$\beta_{\text{ep,z}} = \text{Max}\left(\frac{\frac{c}{t_f} - 10\varepsilon}{6\varepsilon}; 0\right)$$

$$\text{But } \beta_{\text{ep,z}} \leq 1.0$$
(B.4)

For rectangular hollow sections or doubly symmetric welded box sections:

$$\beta_{\text{ep,y}} = \text{Max}\left(\frac{\frac{c}{t_{\text{f}}} - 34\varepsilon}{4\varepsilon}; \frac{\frac{c}{t_{\text{w}}} - 83\varepsilon}{38\varepsilon}; 0\right)$$

$$\text{But } \beta_{\text{ep,y}} \leq 1.0$$
(B.5)

$$\beta_{\text{ep,z}} = \text{Max}\left(\frac{\frac{c}{t_W} - 34\varepsilon}{4\varepsilon}; 0\right)$$

$$\text{But } \beta_{\text{ep,z}} \leq 1.0$$
(B.6)

NOTE $t_f = t_w = t$ for rectangular hollow sections.

Examples from EN 1993-1-1 – references to buckling guidance

CEN Technical Report CEN/TR 1993-1-103

 Much detail on elastic buckling solutions transferred and added to this "Technical Report"

8.3.2.2 Slenderness for lateral torsional buckling curves

(1) The relative slenderness for lateral torsional buckling $\bar{\lambda}_{LT}$ should be taken as:

$$\bar{\lambda}_{LT} = \sqrt{\frac{M_{Rk}}{M_{cr}}}$$
(8.80)

where

 M_{cr} is the elastic critical moment for lateral torsional buckling.

(2) $M_{\rm cr}$ should be based on gross cross-sectional properties and considers the loading conditions, the actual moment distribution and the lateral restraints.

NOTE Formulae for the elastic critical moment can be found in the technical report CEN/TR 1993-1-103.

CEN/TR 1993-1-103

Eurocode 3 – Design of Steel Structures – Part 1-103: Elastic Critical Buckling of Members

Forewo			2	
1			5	
1.1	Loads and load parameters		5	
1.2			5	
1.3			6	
1.4				
1.5			6	
1.6			nal system6	
1.7 1.8			7	
1.B 2			7	
_			8	
3 3.1			8	
3.1.1	Florusei buokling without influence of	choor	8	
3.1.2	Elevural buckling with influence of the	eriear	9	
3.2				
3.3			11	
3.3.1			11	
3.3.2			0	
3.3.3	Single span members with clastic suc	ported ends	13	
3.3.4			17	
3.3.5				
3.3.6	Crossing members		33	
3.4			95	
3.5			43	
3.5.1			43	
3.5.2	Membes with λ effl.eff, $v = 0.35 \pm 0.727$ sections		0 + 0,7\(\lambda\)\(\lambda\)\(\text{cff, z} = 0,50 + 0.7\(\lambda\)\(\text{xhollow}\)	
3.5.3	Members of trusses in unsway frame:	i	44	
3.5.4			44	
3.5.5			45	
3.5.8			45	
3.6	Members of arch structures including	bridges	47	
3.6.1	In plane buckling of arches		47	
3.8.2		arches	49	
3.8.3	Out of plane buckling of arches wi	5.2	Beams with double-symmetric cross-sections	
3.6.4 3.7	Out of plane buckling of circular at Compression members with discre	5.2.1	Simply supported single span beams	
3.7.1		5.2.2	Simply supported continuous beams	
3.7.2	General	5.2.3	Cantilever beams	
3.7.2	springs)	5.2.4	Clamped beams	
3.8	Compression members with confir	5.2.5	Single span beams with specific support conditions	
3.8.1	General	5.3	Beams and cantilevers with mono-symmetric cross-section	
3.8.2	Buckling lengths for compression	5.3.1	General	
0.0.2	bedding)	5.3.2	General formula for beams with uniform cross-sections symmetrical about the minor or	
4	Torsional and torsional flexural	E 0.0	major axis	
4.1	General	5.3.3	Beams with uniform cross-sections symmetrical about major axis, centrally symmetric	
4.2	Members with point and doubly sy	524	and doubly symmetric cross-sections	
4.3	Members with mono symmetric or	5.3.4 5.4	Cantilevers with uniform cross-sections symmetrical about the minor axis	
4.3.1	The stenderness λm and critical k	5.4	Transversely coupled beams	
4.3.2	Elastic critical axial force for torsio	6	Boundary conditions, stiffness of springs and beddings	1
4.4	Members with cross sections w	6.1	General	1
4.5	Members with continuous lateral r	6.2	Fork support conditions	1
5	Lateral torsional buckling	6.3	I-beams with discrete intermediate torsional restraints.	1
5.1	General	6.4	Lateral restraints against lateral torsional buckling	
3.1	CHARLES	6.5	Translational spring stiffnesses and beddings	
		6.5.1	General	
		6.5.2	Resistance of rigid supports	
		6.5.3	Stiffness of rigid supports	
		6.5.4	Resistance of spring supports	
		6.5.5	Effective spring stiffness of spring supports	
		6.6	Rotational spring stiffnesses and beddings	
		6.7	Shear diaphragm stiffness	1

Examples from EN 1993-1-1 – selection of EXC

- Annex A Selection of Execution Class: differentiation now made between static, seismic and fatigue structures for each Consequence Class
- This is however an NDP and UK NA will refer back to PD6705 for selection of EXC and QSC for fatigue
- Note DC is ductility class and not related to VC (verification case)

Consequence					
Consequence Class (CC)	Static, quasi-static	Seismic DC1 ^a	Seismic DC2 ^a	Seismic DC3 ^a	Fatigue ^b
CC3	EXC3c	EXC3c	EXC3c	EXC3c	EXC3c
CC2	EXC2	EXC2	EXC2	EXC3d	EXC3
CC1	EXC1	EXC2 ^e	EXC2	EXC2	EXC2

^a Seismic ductility classes (DC's) are defined in EN 1998-1-1.

NOTE Structures in consequence class CC0 are not covered by this Annex, see prEN 1990:2021, 4.3.

Problematic as EN 1993-1-10 assumes no fatigue in brittle fracture table for EXC2; being discussed/resolved at present

^b See EN 1993-1-9.

^c EXC4 may be considered for special cases, including those typically covered by CC4 of prEN 1990:2021.

^d Only the primary seismic resisting system falls in EXC3; the gravity load resisting system may fall in EXC2.

^e If the seismic action index is not greater than 2,5m/s2 (low seismic action class, see EN 1998-1-1), the execution class of structures in DC1 may be EXC1.

Eurocodes – the second generation

Examples from EN 1993-1-10

Limited change

Eurocode is not yet published by BSI

- Steel plates/sections need adequate toughness to avoid brittle fracture
- Toughness reduces with reducing temperature and increasing steel thickness
- The toughness is usually quantified through Charpy value
- Higher subgrades have greater toughness but longer order times
- The table of Charpy energy for steels in EN 1993-1-10:2005 Table 2.1 is not fully up to date so see <u>Steel material properties</u> – SteelConstruction.info

Speci	fied minimum impact e	energy for carbon steel sul	b-grades						
Standard	Subgrade	Impact strength	Test temperature						
	JR	27J	20°C						
BS EN 10025-2 ^[1]	J0	27J	0°C						
BS EN 10210-1 ^[3]	J2	27J	-20°C						
	K2	40J	-20°C						
BS EN 10025-3 ^[8]	N	40J	-20°c						
BS EN 10025-3 ^[2]	NL	27J	-50°c						
BS EN 10025-4 ^[9]	М	40J	-20°c						
BS EN 10025-4 ¹⁰	ML	27J	-50°c						
	J0	27J	0°C						
	J2	27J	-20°C						
BS EN 10025-5 ^[10]	K2	40J	-20°C						
	J4	27J	-40°C						
	J5	27J	-50°C						
	Q	30J	-20°c						
BS EN 10025-6 ^[11]	QL	30J	-40°c						
	QL1	30J	-60°c						

Current EN 1993-1-10

- The current EN 1993-1-10:2005 - single table of limiting thickness
- Initial flaw assumed to increase in size with fatigue
- Damage assumed = one quarter (500,000 cycles) of full fatigue damage obtained from nominal stress $\Delta\sigma_{\rm C}$ according to EN 1993-1-9 (on basis of regular inspections during service life)

Table 2.1: Maximum permissible values of element thickness t in mm

		Cha	arpy								Re	eferer	ice te	mper	ature	T _{Ed} [°	[C]							\Box
Steel	Sub-	ene		10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50
grade	grade	C\ at T	/N																					
		[°C]	J_{min}	l		σ_{Ed} =	0,75	f _y (t)			l		σ_{Ed} =	0,50	f _y (t)			l		σ_{Ed} =	0,25	f _y (t)		- 1
S235	JR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
1	J0	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
\bot	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
S275	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	J0	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
!	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
!	M,N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
\vdash	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
S355	JR	20	27	40	35	25	20	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
!	J0	0	27	60	50	40	35	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
!	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
1	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
0.400	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
0.400	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
S460	Q	-20	30	70	60	50	40	30	25	20	110	95	75 95	65 75	55 65	45	35 45	175 200	155 175	130	115	95	80	70
	M,N QL	-20 -40	40 30	90 105	70 90	60 70	50 60	40 50	30 40	30	130 155	110	110	95	75	55 65	55	200	200	155 175	130 155	115	95 115	80 95
1	ML,NL	-50	27	125	105	90	70	60	50	40	180	155	130	110	95	75	65	200	200	200	175	155	130	115
1	QL1	-60	30	150	125	105	90	70	60	50	200	180	155	130	110	95	75	215	200	200	200	175	155	130
S690	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60	50	45
0000	Q	-20	30	50	40	30	25	20	15	10	80	65	55	45	35	30	20	140	120	100	85	75	60	50
i i	QL	-20	40	60	50	40	30	25	20	15	95	80	65	55	45	35	30	165	140	120	100	85	75	60
i i	QL	-40	30	75	60	50	40	30	25	20	115	95	80	65	55	45	35	190	165	140	120	100	85	75
ı	QL1	-40	40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
i	QL1	-60	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100

Current EN 1993-1-10

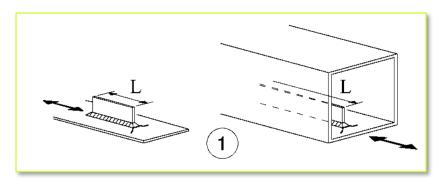
• Paris law $\Delta a/\Delta n = C.\Delta K^m$ used to get crack growth with $\Delta K = YM_k \Delta \sigma (\pi a_i)^{0.5}$

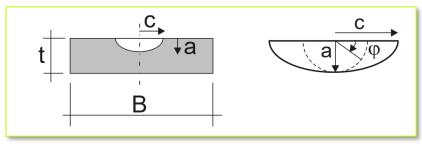
a = crack length

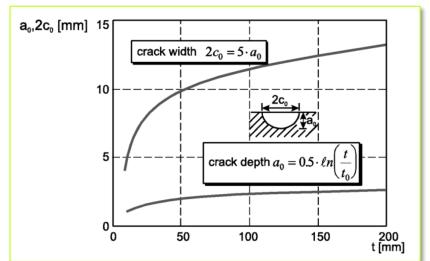
a_i = initial crack length

Y, M_k constants for crack shape and detail type respectively

C, m constants from material tests


- Damage tolerance leads to minimum number of periods between inspections
- Safe life no in-service inspections needed for fatigue


Table 2.1: Maximum permissible values of element thickness t in mm


		Cha	arpy								Re	eferer	ce te	mper	ature	T _{Ed} [°	C]							\Box
Steel	Sub-	ene		10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50	10	0	-10	-20	-30	-40	-50
grade	grade	C\ at T	/N	l '					1	l		l			l							l		' !
		[°C]	J_{min}	l		σ_{Ed} =	0,75	f _y (t)			l		σ_{Ed} =	0,50	f _y (t)					σ_{Ed} =	0,25	f _y (t)		
S235	JR	20	27	60	50	40	35	30	25	20	90	75	65	55	45	40	35	135	115	100	85	75	65	60
l	J0	0	27	90	75	60	50	40	35	30	125	105	90	75	65	55	45	175	155	135	115	100	85	75
	J2	-20	27	125	105	90	75	60	50	40	170	145	125	105	90	75	65	200	200	175	155	135	115	100
S275	JR	20	27	55	45	35	30	25	20	15	80	70	55	50	40	35	30	125	110	95	80	70	60	55
	J0	0	27	75	65	55	45	35	30	25	115	95	80	70	55	50	40	165	145	125	110	95	80	70
!	J2	-20	27	110	95	75	65	55	45	35	155	130	115	95	80	70	55	200	190	165	145	125	110	95
!	M,N	-20	40	135	110	95	75	65	55	45	180	155	130	115	95	80	70	200	200	190	165	145	125	110
oxdot	ML,NL	-50	27	185	160	135	110	95	75	65	200	200	180	155	130	115	95	230	200	200	200	190	165	145
S355	JR	20	27	40	35	25	20	15	15	10	65	55	45	40	30	25	25	110	95	80	70	60	55	45
!	J0	0	27	60	50	40	35	25	20	15	95	80	65	55	45	40	30	150	130	110	95	80	70	60
	J2	-20	27	90	75	60	50	40	35	25	135	110	95	80	65	55	45	200	175	150	130	110	95	80
	K2,M,N	-20	40	110	90	75	60	50	40	35	155	135	110	95	80	65	55	200	200	175	150	130	110	95
0.400	ML,NL	-50	27	155	130	110	90	75	60	50	200	180	155	135	110	95	80	210	200	200	200	175	150	130
S420	M,N	-20	40	95	80	65	55	45	35	30	140	120	100	85	70	60	50	200	185	160	140	120	100	85
0.400	ML,NL	-50	27	135	115	95	80	65	55	45	190	165	140	120	100	85	70	200	200	200	185	160	140	120
S460	Q	-20	30 40	70	60 70	50 60	40	30	25	20	110	95 110	75	65	55 65	45	35	175	155	130 155	115	95 115	80	70
	M,N QL	-20 -40	30	90 105	90	70	50 60	40 50	30 40	25 30	130 155	130	95 110	75 95	75	55 65	45 55	200	175 200	175	155	130	95 115	80 95
	ML.NL	-50	27	125	105	90	70	60	50	40	180	155	130	110	95	75	65	200	200	200	175	155	130	115
l	QL1	-60	30	150	125	105	90	70	60	50	200	180	155	130	110	95	75	215	200	200	200	175	155	130
S690	Q	0	40	40	30	25	20	15	10	10	65	55	45	35	30	20	20	120	100	85	75	60	50	45
3030	Q	-20	30	50	40	30	25	20	15	10	80	65	55	45	35	30	20	140	120	100	85	75	60	50
i	QL	-20	40	60	50	40	30	25	20	15	95	80	65	55	45	35	30	165	140	120	100	85	75	60
i	QL	-40	30	75	60	50	40	30	25	20	115	95	80	65	55	45	35	190	165	140	120	100	85	75
i l	QL1	-40	40	90	75	60	50	40	30	25	135	115	95	80	65	55	45	200	190	165	140	120	100	85
i i	QL1	-60	30	110	90	75	60	50	40	30	160	135	115	95	80	65	55	200	200	190	165	140	120	100

Current EN 1993-1-10

- Rules developed for steel bridge constructions
- Reference detail plate subjected to tension with a welded non-load-carrying longitudinal attachment. (EN 1993-1-9 Table 8.4 Detail Category 56)
- All other detail categories covered safely by this
- A semi-elliptical surface crack is assumed at the hotspot at the weld toe of the attachment
- The ratio of the semi axis crack depth a to crack length c is defined as a/c = 0.4
- Initial values from fabrication depend on plate thickness and are based on EUR23510
- UK NA gives additional requirements

Second generation EN 1993-1-10

- Table 4.2 covers fatigue structures as per first generation but Table 4.3 covers structures not subject to fatigue loading.
- Values in Table 4.3 are derived with same methodology as Table 4.2 but with the number of cycles for the calculation of the crack growth decreased from 500,000 to 20,000 cycles since (nominal fatigue loading)

Table 4.2: Maximum permissible values of element thickness t in mm for Execution Class EXC3 and EXC4

		K\	/												Refer	rence T	emper	ature T	Ed [°C]											
Steel grade	Quality	T [0C]		10	0	-10	-20	-30	-40	-50	-80	-120	10	0	-10	-20	-30	-40	-50	-80	-120	10	0	-10	-20	-30	-40	-50	-80	-120
8		T [°C]	J _{min}				σ _{Ed} :	= 0.75	fy(t)							σ _{Ed}	= 0.5·f	y(t)							σ _{Ed}	= 0.25	fy(t)			
	JR	20	27	60	50	40	35	30	25	20	10	5	90	75	65	55	45	40	35	20	15	135	115	100	85	75	65	60	40	30
S235	JO	0	27	90	75	60	50	40	35	30	15	10	125	105	90	75	65	55	45	30	15	175	155	135	115	100	85	75	50	35
	J2	-20	27	125	105	90	75	60	50	40	25	10	170	145	125	105	90	75	65	40	20	200	200	175	155	135	115	100	65	40
	JR	20	27	55	45	35	30	25	20	15	10	5	80	70	55	50	40	35	30	20	10	125	110	95	80	70	60	55	40	25
	JO	0	27	75	65	55	45	35	30	25	15	5	115	95	80	70	55	50	40	25	15	165	145	125	110	95	80	70	45	30
S275	J2	-20	27	110	95	75	65	55	45	35	20	10	155	130	115	95	80	70	55	35	20	200	190	165	145	125	110	95	60	40
	K2,M,N	-20	40	135	110	95	75	65	55	45	25	10	180	155	130	115	95	80	70	40	20	200	200	190	165	145	125	110	70	40
	ML,NL	-50	27	185	160	135	110	95	75	65	35	15	200	200	180	155	130	115	95	55	30	200	200	200	200	190	165	145	95	55
	JR	20	27	40	35	25	20	15	15	10	5	5	65	55	45	40	30	25	25	15	10	110	95	80	70	60	55	45	30	20
	JO	0	27	60	50	40	35	25	20	15	10	5	95	80	65	55	45	40	30	20	10	150	130	110	95	80	70	60	40	25
S355	J2	-20	27	90	75	60	50	40	35	25	15	5	135	110	95	80	65	55	45	25	15	200	175	150	130	110	95	80	55	30
3333	J4	-40	27	130	110	90	75	60	50	40	20	10	180	155	135	110	95	80	65	40	20	200	200	195	170	150	130	110	70	40
	K2,M,N	-20	40	110	90	75	60	50	40	35	20	5	155	135	110	95	80	65	55	30	15	200	200	175	150	130	110	95	60	35
	J5,ML,NL	-50	27	155	130	110	90	75	60	50	25	10	200	180	155	135	110	95	80	45	25	210	200	200	200	175	150	130	80	45
	JR	20	27	35	30	20	20	15	10	10	5	-	60	50	40	35	25	20	20	10	5	100	85	75	65	55	45	40	30	20
	JO	0	27	55	45	35	30	20	20	15	5	-	85	70	60	50	40	35	25	15	10	140	120	100	85	75	65	55	35	20
S420	J2	-20	27	80	65	55	45	35	30	20	10	5	120	100	85	70	60	50	40	20	10	185	160	140	120	100	85	75	45	30
3420	J4	-40	27	115	95	80	65	55	45	35	20	5	165	140	120	100	85	70	60	35	15	200	200	185	160	140	120	100	65	35
	K2,M,N	-20	40	95	80	65	55	45	35	30	15	5	140	120	100	85	70	60	50	25	15	200	185	160	140	120	100	85	55	30
	J5,ML,NL	-50	27	135	115	95	80	65	55	45	20	10	190	165	140	120	100	85	70	40	20	200	200	200	185	160	140	120	75	40

Second generation EN 1993-1-10

- Table 4.2 covers fatigue structures as per first generation but Table 4.3 covers structures not subject to fatigue loading.
- Values in Table 4.3 are derived with same methodology as Table 4.2 but with the number of cycles for the calculation of the crack growth decreased from 500,000 to 20,000 cycles since (nominal fatigue loading)

Table 4.3: Maximum permissible values of element thickness t in mm for EXC1 and EXC2

Steel grade		κv													Refer	rence T	emper	ature T	Ed [°C]											
	Quality	T [°C]	J _{min}	10	0	-10	-20	-30	-40	-50	-80	-120	10	0	-10	-20	-30	-40	-50	-80	-120	10	0	-10	-20	-30	-40	-50	-80	-120
					$\sigma_{Ed} = 0.75 \cdot fy(t) \qquad \qquad \sigma_{Ed} = 0.5 \cdot fy(t) \label{eq:sigma_Ed}$											$\sigma_{Ed} = 0.25 \cdot fy(t)$														
S235	JR	20	27	250	250	170	120	90	65	50	25	15	250	250	250	250	190	145	110	55	30	250	250	250	250	250	250	250	135	75
	JO	0	27	250	250	250	250	170	120	90	40	15	250	250	250	250	250	250	190	85	40	250	250	250	250	250	250	250	200	100
	J2	-20	27	250	250	250	250	250	250	170	65	25	250	250	250	250	250	250	250	145	55	250	250	250	250	250	250	250	250	135
S275	JR	20	27	250	185	130	95	70	50	40	20	10	250	250	250	205	150	115	90	45	25	250	250	250	250	250	250	215	120	65
	JO	0	27	250	250	250	185	130	95	70	30	15	250	250	250	250	250	205	150	70	30	250	250	250	250	250	250	250	175	85
	J2	-20	27	250	250	250	250	250	185	130	50	20	250	250	250	250	250	250	250	115	45	250	250	250	250	250	250	250	250	120
	K2,M,N	-20	40	250	250	250	250	250	250	185	70	25	250	250	250	250	250	250	250	150	55	250	250	250	250	250	250	250	250	140
	ML,NL	-50	27	250	250	250	250	250	250	250	130	40	250	250	250	250	250	250	250	250	90	250	250	250	250	250	250	250	250	215
\$355 \$420	JR	20	27	165	115	85	60	45	35	25	10	5	250	250	190	140	105	80	60	30	15	250	250	250	250	250	210	165	90	50
	JO	0	27	250	240	165	115	85	60	45	20	5	250	250	250	250	190	140	105	45	20	250	250	250	250	250	250	250	135	65
	J2	-20	27	250	250	250	240	165	115	85	35	10	250	250	250	250	250	250	190	80	30	250	250	250	250	250	250	250	210	90
	J4	-40	27	250	250	250	250	250	240	165	60	20	250	250	250	250	250	250	250	140	45	250	250	250	250	250	250	250	250	135
	K2,M,N	-20	40	250	250	250	250	240	165	115	45	15	250	250	250	250	250	250	250	105	35	250	250	250	250	250	250	250	250	110
	J5,ML,NL	-50	27	250	250	250	250	250	250	240	85	25	250	250	250	250	250	250	250	190	60	250	250	250	250	250	250	250	250	165
	JR	20	27	120	85	60	45	30	25	20	10	5	250	200	145	105	80	60	45	25	10	250	250	250	250	225	175	140	75	40
	JO	0	27	250	175	120	85	60	45	30	15	5	250	250	250	200	145	105	80	35	15	250	250	250	250	250	250	225	110	55
	J2	-20	27	250	250	250	175	120	85	60	25	10	250	250	250	250	250	200	145	60	25	250	250	250	250	250	250	250	175	75
	J4	-40	27	250	250	250	250	250	175	120	45	15	250	250	250	250	250	250	250	105	35	250	250	250	250	250	250	250	250	110
	M,N	-20	40	250	250	250	250	175	120	85	30	10	250	250	250	250	250	250	200	80	30	250	250	250	250	250	250	250	225	90
	J5,ML,NL	-50	27	250	250	250	250	250	250	175	60	20	250	250	250	250	250	250	250	145	45	250	250	250	250	250	250	250	250	140

Technical improvements - Summary

The updates are balancing:

Making improvements:

- Improving reliability
- Increasing scope to cover missing material designers need
- Standardising further across CEN countries
- Making rules more understandable and consistent

with:

Minimising disruption upon introduction:

- Rework of design guides and software
- Re-education of designers
- Situations where recently designed structures are no longer "adequate"